Inference of species interaction networks from incomplete data

Raphaëlle Momal

Supervision: S. Robin ${ }^{1}$ and C. Ambroise ${ }^{2}$
${ }^{1}$ UMR AgroParisTech / INRA MIA-Paris
${ }^{2}$ LaMME, Evry

November $12^{\text {th }}, 2020$

Network example in ecology

Pocock et. al 2012

Aim of network inference from abundance data

EFI	ELA	GDE	GME	date	site
71	1	5	6	apr93	$\mathrm{km03}$
118	2	3	0	apr93	$\mathrm{km03}$
69	0	6	2	apr93	$\mathrm{km03}$
56	0	0	0	apr93	$\mathrm{km03}$
0	1	1	0	apr93	km 17
0	0	2	0	apr93	$\mathrm{km17}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

(a) species abundances \mathbf{Y}
(b) covariates \mathbf{X}
(c) \mathbf{G}

Data sample from the Fatala river dataset (Baran 1995).

■ Unknown underlying structure.
■ Unobserved interaction data.

Incomplete abundance data

Mathematical framework

i Graphical Models
ii Graph exploration with trees
iii Poisson log-Normal model

Which statistical link?

Dependence?

Which statistical link?

Dependence?

Conditional dependence:

- Only direct links: less links.
- Probabilistic background $p(a, b \mid c)=p(a \mid c) p(b \mid c)$.
- Possible to model.

Spurious dependence

Graphical Models

Global Markov:
 Y_{2} separates Y_{3} from $Y_{4} \Rightarrow Y_{3} \Perp Y_{4} \mid Y_{2}$.

Hammersley-Clifford:
Strictly positive and continuous density f : f global Markov $\Longleftrightarrow f(\boldsymbol{Y})=\prod_{c \in \mathcal{C}} \psi\left(Y_{c}\right)$.

Here $\mathcal{C}=\{\{1,2,3\},\{2,4\}\}:$

$$
f(\boldsymbol{Y})=\psi\left(Y_{1}, Y_{2}, Y_{3}\right) \times \psi\left(Y_{2}, Y_{4}\right)
$$

Marginalization of graphs

Complete graph:
Marginal graph:

Spurious edges leading to wrong interpretation
X is a covariate or a species unaccounted for in the model.

Gaussian Graphical Models (GGM)

Let $\boldsymbol{Y} \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$ with precision matrix $\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-1}=\left(\omega_{j k}\right)_{j k}$:

$$
f(\boldsymbol{Y}) \propto \prod_{j, k,, \omega_{j k} \neq 0} \exp \left(-Y_{k} \omega_{j k} Y_{j} / 2\right)
$$

Faithful Markov property:

$$
\Omega=\left(\begin{array}{llll}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & 0 \\
0 & * & 0 & *
\end{array}\right)
$$

Exploring the graph space

Aim: infer G.
Very large space to explore: $\# \mathcal{G}_{p}=2 \frac{p(p-1)}{2}$
Spanning trees are sparse and simple structures:

- no loops

■ ($p-1$) edges

Much smaller space to explore:

$$
\# \mathcal{T}_{p}=p^{(p-2)}
$$

Summing over spanning trees

Let $\mathbf{W}=\left(w_{j k}\right)_{j k}$ be a matrix with null diagonal and positive entries, and \mathbf{Q} its Laplacian:

$$
[\mathbf{Q}]_{j k}= \begin{cases}\sum_{k} w_{j k} & \text { if } j=k \\ -w_{j k} & \text { otherwise }\end{cases}
$$

Matrix-tree Theorem (Chaiken and Kleitman, 1978)

All minors of \mathbf{Q} are equal, and for any $1 \leq u, v, \leq p$:

$$
\left|\mathbf{Q}^{u v}\right|=\sum_{T \in \mathcal{T}} \prod_{j k \in T} w_{j k}
$$

Allows to sum over $p^{(p-2)}$ trees in $\mathcal{O}\left(p^{3}\right)$ operations.

Exploring \mathcal{T} with tree averaging

Network inference
$=$ edge probabilities:

$$
\begin{gathered}
\mathbb{P}\{k \ell \in T\}=\sum_{\substack{T \in \mathcal{T} \\
k \ell \in T}} p(T) \\
p(T) \propto \prod_{k l \in T} w_{k l}
\end{gathered}
$$

Getting back to Gaussian data

Modeling counts with Gaussian latent parameters

Poisson log-normal model

$\mathrm{P} \ell \mathrm{N}$ model (Aitchison and Ho, 1989) for sample i and species j :

$$
\begin{aligned}
\boldsymbol{Z}_{i} & \sim \mathcal{N}(0, \boldsymbol{\Sigma}) \\
Y_{i j} \mid \boldsymbol{Z}_{i} & \sim \mathcal{P}(\exp (\underbrace{o_{i j}+\boldsymbol{x}_{i}^{\top} \boldsymbol{\theta}_{j}}_{\text {fixed }}+Z_{i j})) .
\end{aligned}
$$

■ Latent variables are iid, observed data are independent conditionally on the \boldsymbol{Z}_{i}.

- A generalized multivariate linear mixed model : fixed abiotic and random biotic effects.
- Variational estimation algorithm (PLNmodels, Chiquet et al. (2018))

Network inference from counts

i Model
ii Inference
iii Illustration

General model

- Assume a random tree dependency structure T
- Dependence structure in Gaussian layer Z
- Distribution for counts \boldsymbol{Y} accounting for covariates/offsets

■ Matrix Tree Theorem

- Gaussian Graphical Model

■ Poisson log-normal model

P ℓN model with tree-shaped Gaussian parameters

$$
T \sim \prod_{k l \in T} \beta_{k l} / B,
$$

P ℓN model with tree-shaped Gaussian parameters

$$
\begin{aligned}
& T \sim \prod_{k l \in T} \beta_{k l} / B \\
& \boldsymbol{Z}_{i} \mid T \sim \mathcal{N}\left(0, \Omega_{T}\right)
\end{aligned}
$$

P ℓN model with tree-shaped Gaussian parameters

$$
\left\{\begin{array}{l}
T \sim \prod_{k \mid \in T} \beta_{k l} / B, \\
\boldsymbol{Z}_{i} \mid T \sim \mathcal{N}\left(0, \Omega_{T}\right) \\
Y_{i j} \mid \boldsymbol{Z}_{i} \sim \mathcal{P}\left(\exp \left(o_{i j}+\boldsymbol{x}_{i}^{\top} \boldsymbol{\theta}_{j}+z_{i j}\right)\right) .
\end{array}\right.
$$

Gaussian mixture with p^{p-2} components:

$$
p(\boldsymbol{Z})=\sum_{T \in \mathcal{T}} p(T) \mathcal{N}\left(\boldsymbol{Z} \mid T ; 0, \boldsymbol{\Omega}_{T}\right)
$$

Decomposition of the likelihood:

$$
p(\boldsymbol{Y}, \boldsymbol{Z}, T)=p_{\beta}(T) p_{\Omega_{T}}(\boldsymbol{Z} \mid T) p_{\theta}(\boldsymbol{Y} \mid \boldsymbol{Z})
$$

Two-step procedure

EM algorithm (Dempster et al., 1977)

Maximizes the likelihood in presence of latent variables:

> E step: Compute $\mathbb{E}\left[\log p_{\Theta^{t}}(\boldsymbol{Y}, \boldsymbol{Z}, T) \mid \boldsymbol{Y}\right]$
> M step: $\Theta^{t+1}=\operatorname{argmax}_{\Theta}\left\{\mathbb{E}\left[\log p_{\Theta^{t}}(\boldsymbol{Y}, \boldsymbol{Z}, T) \mid \boldsymbol{Y}\right]\right\}$

Two-step procedure

EM algorithm (Dempster et al., 1977)

Maximizes the likelihood in presence of latent variables:

> E step: Compute $\mathbb{E}\left[\log p_{\Theta^{t}}(\boldsymbol{Y}, \boldsymbol{Z}, T) \mid \boldsymbol{Y}\right]$
> M step: $\Theta^{t+1}=\operatorname{argmax}_{\Theta}\left\{\mathbb{E}\left[\log p_{\Theta^{t}}(\boldsymbol{Y}, \boldsymbol{Z}, T) \mid \boldsymbol{Y}\right]\right\}$

1 PLNmodels (Chiquet et al., 2018) gives $\widehat{\boldsymbol{\theta}}$ and approximates of $\boldsymbol{Z} \mid \boldsymbol{Y}$ sufficient statistics.
2 EM algorithm to get $\widehat{\boldsymbol{\beta}}$.

Actually: $\tilde{\mathbb{E}}\left[\log p_{\beta}(\boldsymbol{Y}, \boldsymbol{Z}, T) \mid \boldsymbol{Z}\right]=\tilde{\mathbb{E}}\left[\log p_{\beta}(\boldsymbol{Z}, \boldsymbol{T}) \mid \boldsymbol{Z}\right]+$ cst.

Factorization on the edges

Tree structure factorization:

$$
p_{\boldsymbol{\Omega}_{T}}(\boldsymbol{Z} \mid T)=\prod_{k} p\left(\boldsymbol{Z}_{k}\right) \prod_{k \mid \in T} \frac{p\left(\boldsymbol{Z}_{k}, \boldsymbol{Z}_{l}\right)}{p\left(\boldsymbol{Z}_{k}\right) p\left(\boldsymbol{Z}_{l}\right)}
$$

Only the $1^{\text {rst }}$ and $2^{\text {nd }}$ order moments of $\boldsymbol{Z} \mid \boldsymbol{Y}$ are required, replaced by their variational approximation from step 1 .

Expression of the surrogate

$$
\tilde{\mathbb{E}}\left[\log p_{\beta}(\boldsymbol{Z}, T) \mid \boldsymbol{Z}\right]=\sum_{j<k} P_{j k} \log \left(\beta_{j k} \widehat{\psi}_{j k}\right)-\log B+c s t,
$$

where $\widehat{\psi}_{j k}=\left(1-\widehat{\rho}_{j k}^{2}\right)^{-n / 2}$ and $P_{j k}=\mathbb{P}\{j k \in T \mid \boldsymbol{Z}\}$.

Proposed EM algorithm

The M matrix is built from the inverse of a Laplacian matrix (Meilă and Jaakkola, 2006).

E step: $p(T \mid \boldsymbol{Z})$ factorizes on the edges. Using the weight matrix $\mathbf{W}=\boldsymbol{\beta} \odot \widehat{\psi}$, all probabilities can be computed at once:

$$
P_{j k}=w_{j k} M(\mathbf{W})_{j k}(\text { Kirshner, 2008) }
$$

M step: Requires the computation of $\partial_{\beta_{j k}}\left(\sum_{T \in \mathcal{T}} \prod_{j k \in T} \beta_{j k}\right)$. Closed form is available:

$$
\beta_{j k}^{t+1}=\frac{P_{j k}^{t}}{M\left(\boldsymbol{\beta}^{t}\right)_{j k}}
$$

Oak powdery mildew

Pathogen Erysiphe alphitoides (EA).

Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome Jakuschkin et al. (2016).
■ \boldsymbol{Y} : 116 sample of 114 microbial species counts (bacteria/fungi)
■ X: sampled tree, and 3 quantitative covariates
■ O: Different read depth for bacteria and fungi

Edge selection frequencies

1 Create S random sub-samples using 80% of input abundance data

	edges probabilities					
1	$2 \mathrm{e}-04$	0.0024	0.0414	0.2507		
2	$1 \mathrm{e}-04$	0.0013	0.0004	0.0574		
	3	$2 \mathrm{e}-04$	0.0013	0.0008	0.0127	\ldots
	\vdots	\vdots	\vdots	\vdots	\vdots	

3 Apply average probability $2 / p$ threshold on all resampled probabilities
$4 F_{j k}=\sum_{s=1}^{S} \mathbb{1}\left\{P_{j k}^{s} \geq 2 / p\right\} / S$
Edges selection frequencies: $0.000 \quad 0.0381 \quad 0.0190 \quad 0.7048$

Oak mildew networks

Frequencies above 90%.
6.5 s : average running time for one model.

Ea neighbors: previous study

On the 39 infected samples:

Comparison with Jakuschkin et al. (2016)

20s: average running time.

Inference from incomplete counts

i Model
ii Inference
iii Illustration

Marginalization of graphs

Complete graph:
Marginal graph:

Spurious edges leading to wrong interpretation
X is a missing actor.

Added hidden Gaussian parameters

Added hidden Gaussian parameters

Z: $n \times p$

$$
\boldsymbol{Z} \mid T \sim \mathcal{N}\left(0, \Omega_{T}^{-1}\right)
$$

- Same model with r additional dimensions
- Need access to sufficient statistics regarding Z_{H}

Variational EM algorithm

Finding distribution $q(\boldsymbol{H}) \approx p(\boldsymbol{H} \mid \boldsymbol{Y})$:

- Restricting the search space to a family Q,

■ Choosing q with smallest distance to $p(\boldsymbol{H} \mid \boldsymbol{Y})$.

Doing so maximizes a lower-bound of the log-likelihood:

$$
\mathcal{J}(\Theta ; q)=\log p_{\Theta}(\boldsymbol{Y})-K L\left(q(\boldsymbol{H}) \| p_{\Theta}(\boldsymbol{H} \mid \boldsymbol{Y})\right)
$$

Variational EM algorithm

VE step: $q^{t+1}=\operatorname{argmax}_{q \in Q}\left\{\mathcal{J}\left(\Theta^{t} ; q^{t}\right)\right\}=\operatorname{argmin}_{q \in Q}\left\{K L\left(q^{t} \| p_{\Theta^{t}}\right)\right\}$
M step: $\Theta^{t+1}=\operatorname{argmax}_{\Theta}\left\{\mathcal{J}\left(\Theta^{t} ; q^{t+1}\right)\right\}$

Variational distribution

Two hidden variables: $\boldsymbol{Z}=\left(\boldsymbol{Z}_{O}, \mathbf{Z}_{H}\right)$ and T.

$$
q(\boldsymbol{Z}, T)=h(\boldsymbol{Z}) g(T)
$$

$h(\boldsymbol{Z})$: Product (independence of samples i) of Gaussians:

$$
h(\boldsymbol{Z})=\prod \mathcal{N}_{p+r}\left(\boldsymbol{Z}_{i} ; \widetilde{\boldsymbol{m}}_{i}, \widetilde{\boldsymbol{s}}_{i}\right)
$$

$g(T)$: Mean-field approximation:

$$
g(T) \propto \exp \{\mathbb{E}_{h}[\underbrace{\log p_{\boldsymbol{\beta}}(T)+\log p_{\Omega}(\boldsymbol{Z} \mid T)}_{\text {Factorizes on the edges of } T}]\}
$$

$$
g(T) \propto \prod_{k l \in T} \widetilde{\beta}_{k l}
$$

Variational distribution

Two hidden variables: $\boldsymbol{Z}=\left(\boldsymbol{Z}_{O}, \mathbf{Z}_{H}\right)$ and T.

$$
q(\boldsymbol{Z}, T)=h(\boldsymbol{Z}) g(T)
$$

$h(Z)$: Product (independence of samples i) of Gaussians:

$$
h(\boldsymbol{Z})=\prod \mathcal{N}_{p+r}\left(\boldsymbol{Z}_{i} ; \widetilde{\boldsymbol{m}}_{i}, \widetilde{\boldsymbol{s}}_{i}\right)
$$

$g(T)$: Mean-field approximation:

$$
g(T) \propto \exp \{\mathbb{E}_{h}[\underbrace{\log p_{\boldsymbol{\beta}}(T)+\log p_{\boldsymbol{\Omega}}(\boldsymbol{Z} \mid T)}_{\text {Factorizes on the edges of } T}]\}
$$

$$
g(T) \propto \prod_{k l \in T} \widetilde{\beta}_{k l}
$$

Variational parameters:

$$
\begin{array}{lll}
\widetilde{\boldsymbol{M}}=\left(\widetilde{\boldsymbol{M}}_{O}, \widetilde{\boldsymbol{M}}_{H}\right), & \widetilde{S}=\left(\widetilde{\boldsymbol{S}}_{O}, \widetilde{\boldsymbol{S}}_{H}\right), & \widetilde{\boldsymbol{\beta}} \\
n \times p^{\prime}, & n \times p^{\prime}, & p^{\prime 2}
\end{array}
$$

Proposed algorithm

PLNmodels: Parameters regarding the observed part: $\widehat{\boldsymbol{\theta}}, \widetilde{\boldsymbol{M}}_{O}, \widetilde{\boldsymbol{S}}_{O}$

- Fixed for further computations.

VE step: Update variational parameters: $\widetilde{\boldsymbol{M}}_{H}^{t+1}, \widetilde{\boldsymbol{S}}_{H}^{t+1}, \widetilde{\boldsymbol{\beta}}^{t+1}$

- Given by shapes of g and h distributions.

M step: Update model parameters: $\boldsymbol{\Omega}_{T}^{t+1}, \boldsymbol{\beta}^{t+1}$
■ $\beta_{j k}=P_{j k} / M(\boldsymbol{\beta})_{j k}$ with $P_{j k}=\sum_{T \in \mathcal{T}, T \ni j k} g(T)$,
■ Ω_{T} : adaptation of ML estimators (Lauritzen, 1996).

Proposed algorithm

PLNmodels: Parameters regarding the observed part: $\widehat{\boldsymbol{\theta}}, \widetilde{\boldsymbol{M}}_{O}, \widetilde{\boldsymbol{S}}_{O}$

- Fixed for further computations.

VE step: Update variational parameters: $\widetilde{\boldsymbol{M}}_{H}^{t+1}, \widetilde{\boldsymbol{S}}_{H}^{t+1}, \widetilde{\boldsymbol{\beta}}^{t+1}$

- Given by shapes of g and h distributions.

M step: Update model parameters: $\boldsymbol{\Omega}_{T}^{t+1}, \boldsymbol{\beta}^{t+1}$

- $\beta_{j k}=P_{j k} / M(\boldsymbol{\beta})_{j k}$ with $P_{j k}=\sum_{T \in \mathcal{T}, T \ni j k} g(T)$,

■ Ω_{T} : adaptation of ML estimators (Lauritzen, 1996). $p^{\prime p^{\prime}-2} \times p^{\prime 2} / 2$ parameters $\Rightarrow p^{\prime 2} / 2$ estimators.

Lauritzen's ML estimator

In a GGM with a chordal graph \mathbf{G} (cliques \mathcal{C}, separators \mathcal{S} with multiplicities $\nu(S)$), $S S D$ the sum of squares matrix.

General Lauritzen's MLE

$$
\widehat{\Omega}_{\mathbf{G}}^{M L E}=n\left(\sum_{C \in \mathcal{C}}\left[\left(S S D_{C}\right)^{-1}\right]^{p^{\prime}}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(S S D_{S}\right)^{-1}\right]^{p^{\prime}}\right)
$$

- The general SSD matrix do not depend on \mathbf{G}.

■ The estimator uses $S S D$ according to the graph structure.

Lauritzen's ML estimator

In a GGM with a chordal graph \mathbf{G} (cliques \mathcal{C}, separators \mathcal{S} with multiplicities $\nu(S)), S S D$ the sum of squares matrix.

General Lauritzen's MLE

$$
\widehat{\Omega}_{\mathbf{G}}^{M L E}=n\left(\sum_{C \in \mathcal{C}}\left[\left(S S D_{C}\right)^{-1}\right]^{p^{\prime}}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(S S D_{S}\right)^{-1}\right]^{p^{\prime}}\right)
$$

If \mathbf{G} is a tree $T \in \mathcal{T}$:

- T is chordal.

■ Cliques are edges: inverses of 2×2 matrices.

- Separators are nodes: $\mathcal{S}=\left\{1, \ldots, p^{\prime}\right\}$.

■ $\nu(k)=\operatorname{deg}(k)-1$.

Update of Ω_{T}

We define:

$$
S S D=\mathbb{E}_{h}\left[\boldsymbol{Z}^{\top} \boldsymbol{Z} \mid \boldsymbol{Y}\right]=\widetilde{\boldsymbol{M}}^{\top} \widetilde{\boldsymbol{M}}+\operatorname{diag}\left(\sum_{i} \widetilde{\boldsymbol{s}}_{i}\right)
$$

Tree simplification of Lauritzen's formula:

$$
\begin{aligned}
& \omega_{T j k}^{t+1}=\mathbb{1}\{j k \in T\}\left(\frac{-s s d_{j k}^{t} / n}{1-\left(s s d_{j k}^{t} / n\right)^{2}}\right), \\
& \omega_{T k k}^{t+1}=1-\sum_{j}\left(s s d_{j k}^{t} / n\right) \times \omega_{T j k}^{t+1} .
\end{aligned}
$$

The estimates $\omega_{T j k}$ are common to all trees sharing the edge $j k$: estimating $\left\{\boldsymbol{\Omega}_{T}, T \in \mathcal{T}\right\}$ amounts to estimating $p^{\prime 2} / 2$ quantities.

Barent's sea fishes

- \boldsymbol{Y} : abundances of 30 fish species in 89 sites,

■ X: latitude, longitude, depth and temperature,

■ O: total detections per site.

Stiansen et al. (2009)
\Rightarrow Fit with no covariates.

Barent's fishes networks

Left: observed network (3.3 mins). Right: network inferred with one missing actor: H (5.0 mins).

Relationship with temperature

$\operatorname{Cor}($ Mh, Temp $)=0.85$.

Direct neighbors are more linked to the temperature than other species.

Conclusion and Perspectives

Conclusion

A probabilistic model for:
■ Inferring conditional dependency network from abundance data.

- Accounting for covariates, offsets and missing actors.

An inference which:

- Takes advantage of the Gaussian framework flexibility
- Uses spanning trees algebraic properties to rely on determinants and inverses of graph Laplacian matrices.

Methods are implemented in R and available.

Extensions

Network analysis:
■ Compare networks with the estimated tree distributions.

- Study interactions sign and strength available by computing partial correlations.

Ecological specifics:

■ Different emission law (presence/absence), provided there is a Gaussian latent layer of parameters.

- Account for spatial dependencies within the Gaussian covariance structure.

Direct model:
■ Graphical model on counts with tree averaging

Contributions

Articles

- Momal R., Robin S., and Ambroise C. . "Tree-based inference of species interaction networks from abundance data." Methods in Ecology and Evolution 11.5 (2020): 621-632.
- Momal R., Robin S., and Ambroise C. . "Accounting for missing actors in interaction network inference from abundance data." arXiv preprint arXiv:2007.14299 (2020).
R packages
■ EMtree: https://rmomal.github.io/EMtree/.
- nestor (Network inference from Species counTs with missing actORs): https://rmomal.github.io/nestor.

References I

Aitchison, J. and Ho, C. (1989). The multivariate Poisson-log normal distribution. Biometrika, 76(4):643-653.
Beal, M. and Ghahramani, Z. (2003). The variational bayesian em algorithm for incomplete data: with application to scoring graphical model structures. In Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, volume 7, pages 453-464. Oxford University Press.

Chaiken, S. and Kleitman, D. J. (1978). Matrix tree theorems. Journal of combinatorial theory, Series A, 24(3):377-381.
Chiquet, J., Mariadassou, M., and Robin, S. (2018). Variational inference for probabilistic poisson pca. The Annals of Applied Statistics, 12(4):2674-2698.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc., series B, 39:1-38.
Jakuschkin, B., Fievet, V., Schwaller, L., Fort, T., Robin, C., and Vacher, C. (2016). Deciphering the pathobiome: Intra- and interkingdom interactions involving the pathogen erysiphe alphitoides. Microb Ecol, 72(4):870-880.

Kirshner, S. (2008). Learning with tree-averaged densities and distributions. In Advances in Neural Information Processing Systems, pages 761-768.
Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series. Clarendon Press.
Meilă, M. and Jaakkola, T. (2006). Tractable bayesian learning of tree belief networks. Statistics and Computing, 16(1):77-92.
Stiansen, J. E., Korneev, O., Titov, O. V., Arneberg, P., Filin, A., Hansen, J., Høines, Å. S., and Marasaev, S. (2009). Joint norwegian-russian environmental status 2008: report on the barents sea ecosystem, part i-short version.

Signs and strengths of interactions

$$
\rho_{j k}=\frac{-\omega_{j k}}{\sqrt{\omega_{k k} \omega_{j j}}}
$$

S: sample covariance matrix of \boldsymbol{Z}.
\widehat{S} : fitted covariance matrix (ggm R package)

$$
\widehat{s}=s:
$$

	-1	0	1
-1	5	45	0
1	0	48	7

$$
\widehat{S}=f(S, \mathbf{G})
$$

	-1	0	1
-1	5	0	0
0	0	93	0
1	0	0	7

$$
\widehat{S}=f(S, \widehat{\mathbf{G}}):
$$

	-1	0	1
-1	4	0	0
0	1	93	2
1	0	0	5

Signs and strengths of interactions

Network comparison

$$
\begin{aligned}
D\left(p_{\boldsymbol{\beta}^{A}}, p_{\boldsymbol{\beta}^{B}}\right) & =\frac{1}{2}\left[K L\left(p_{\boldsymbol{\beta}^{B}} \| p_{\boldsymbol{\beta}^{A}}\right)+K L\left(p_{\boldsymbol{\beta}^{\mathrm{A}}} \| p_{\boldsymbol{\beta}^{B}}\right)\right] \\
& =\sum_{k l} \log \left(\beta_{k l}^{A} / \beta_{k l}^{B}\right)\left(\frac{P_{k l}^{A}-P_{k l}^{B}}{2}\right)
\end{aligned}
$$

Oak dataset:

A different emission law

$$
\left\{\begin{array}{l}
T \sim \prod_{k l \in T} \beta_{k l} / B \\
\boldsymbol{Z}_{i} \mid T \sim \mathcal{N}\left(0, \Omega_{T}\right) \\
Y_{i j} \mid \boldsymbol{Z}_{i} \sim \mathcal{F}_{j}\left(o_{i j}, \boldsymbol{x}_{i}, Z_{i j}\right)
\end{array}\right.
$$

$\mathcal{F}_{j}: \mathcal{B}, \mathcal{P}, \ldots$

Account for spatial dependencies

Separate dependencies: $\Gamma=\left(\Gamma_{s t}\right)_{1 \leq s, t \leq n}, \Sigma_{T}=\left(\sigma_{j k}\right)_{1 \leq j, k \leq p}$.

$$
\left\{\begin{aligned}
\operatorname{Cov}\left(Z_{s j}, Z_{s k}\right) & =\gamma_{s s} \sigma_{j k} \\
\operatorname{Cov}\left(Z_{s j}, Z_{t j}\right) & =\sigma_{j j} \gamma_{s t}
\end{aligned}\right.
$$

Defining $\operatorname{Vec}(\boldsymbol{Z})=\left(Z_{11}, \ldots, Z_{1 p}, Z_{21}, \ldots, Z_{n p}\right) \in \mathbb{R}^{n \times p}$, we obtain:

$$
\operatorname{Vec}(\boldsymbol{Z}) \sim \mathcal{N}\left(0, \Gamma \otimes \Sigma_{T}\right)
$$

Γ as a function of $|s-t|$ reduces the number of parameters.

Network inference from counts

With any marginal and bivariate distribution for counts:

$$
p_{\theta}\left(\boldsymbol{Y}_{i} \mid T\right)=\prod_{j=1}^{p} p_{\theta}\left(Y_{i j}\right) \prod_{j k \in T} \frac{p_{\theta}\left(Y_{i j}, Y_{i k}\right)}{p_{\theta}\left(Y_{i j}\right) p_{\theta}\left(Y_{i k}\right)}
$$

The joint distribution of counts would be a mixture on spanning trees:

$$
p_{\beta, \theta}(\boldsymbol{Y})=\sum_{T \in \mathcal{T}} p_{\beta}(T) p_{\theta}(\boldsymbol{Y} \mid T)
$$

Network inference methods comparison

Easy ($\mathrm{n}=100, \mathrm{p}=20$)

Hard ($n=50, p=30$)

Edges scoring comparison

Reconstruction of the missing actor

Initialize with more potential neighbors

Lauritzen's notation

For any square matrix \mathbf{A} :

$$
\begin{gathered}
\left(\left[\mathbf{A}_{B}\right]^{p}\right)_{i j}=\left\{\begin{array}{rl}
a_{i j} & \text { if }\{i, j\} \in B, \\
0 & \text { if }\{i, j\} \notin B . \\
\mathbf{A}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \Rightarrow\left[\mathbf{A}_{\{2,3\}}\right]^{3}=\left(\begin{array}{lll}
0 & * & * \\
0 & * & * \\
0 & 0 & 0
\end{array}\right)
\end{array} .\left\{\begin{array}{l}
\end{array}\right) .\right.
\end{gathered}
$$

The M matrix

Lemma (Meilă and Jaakkola, 2006)

$\mathbf{Q}^{p p}$ is the Laplacian matrix \mathbf{Q} to which the the last column and row were removed. M is then defined as follows:

$$
[M]_{j k}= \begin{cases}{\left[\left(\mathbf{Q}^{p p}\right)^{-1}\right]_{j j}+\left[\left(\mathbf{Q}^{p p}\right)^{-1}\right]_{k k}-2\left[\left(\mathbf{Q}^{p p}\right)^{-1}\right]_{j k}} & 1 \leq j, k<p \\ {\left[\left(\mathbf{Q}^{p p}\right)^{-1}\right]_{j j}} & k=p, 1 \leq j<p \\ 0 & k=j\end{cases}
$$

Prevent numerical issues

The Laplacian matrix \mathbf{Q} must be positive definite, which calls for some numerical control of the weights β :

- centering in log scale
- sum constraint

Variational weights depend on the number of available samples n. Tempering parameter α :

$$
\log \widetilde{\beta}_{k l}=\log \beta_{k l}-\alpha\left(\frac{n}{2} \log \left|\widehat{\boldsymbol{R}}_{T k l}\right|+\widehat{\omega}_{T k l}\left[M^{\top} M\right]_{k l}\right)
$$

