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Introduction Biological context

Network example in ecology

Pocock et. al 2012

Tool to better
understand species
interactions,
eco-systems
organizations

Allows for resilience
analyses, pathogens
control, ecosystem
comparison, response
prediction...
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Introduction Problematic

Aim of network inference from abundance data

EFI ELA GDE GME
71 1 5 6

118 2 3 0
69 0 6 2
56 0 0 0

0 1 1 0
0 0 2 0
...

...
...

...

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

(a) species abundances Y (b) covariates X (c) G

Data sample from the Fatala river dataset (Baran 1995).

Unknown underlying structure.

Unobserved interaction data.
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Introduction Problematic

Incomplete abundance data

EFI ELA GDE GME
71 1 5 6

118 2 3 0
69 0 6 2
56 0 0 0

0 1 1 0
0 0 2 0
...

...
...

...

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

=⇒ ?

(a) incomplete abundances Y (b) incomplete X (c) G
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Mathematical framework

Mathematical framework
i Graphical Models

ii Graph exploration with trees

iii Poisson log-Normal model
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Mathematical framework Graphical Models

Which statistical link?

Dependence?

Spurious dependence

×

Conditional dependence:

Only direct links: less links.

Probabilistic background
p(a, b | c) = p(a | c) p(b | c).

Possible to model.
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Mathematical framework Graphical Models

Graphical Models

Y1

Y2

Y3

Y4

Global Markov:
Y2 separates Y3 from Y4 ⇒ Y3 ⊥⊥ Y4 | Y2.

Hammersley-Clifford:
Strictly positive and continuous density f :

f global Markov ⇐⇒ f (Y ) =
∏
c∈C

ψ(Yc).

Here C =
{
{1, 2, 3}, {2, 4}

}
:

f (Y ) = ψ(Y1,Y2,Y3)× ψ(Y2,Y4)
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Mathematical framework Graphical Models

Marginalization of graphs

Complete graph:

Y1

X

Y2

Y3

=⇒

Marginal graph:

Y1

Y2

Y3

Spurious edges leading to
wrong interpretation

X is a covariate or a species unaccounted for in the model.
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Mathematical framework Graphical Models

Gaussian Graphical Models (GGM)

Let Y ∼ N (µ,Σ) with precision matrix Ω = Σ−1 = (ωjk)jk :

f (Y ) ∝
∏

j ,k,,ωjk 6=0

exp(−YkωjkYj/2).

Faithful Markov property:

Y1

Y2

Y3

Y4
⇐⇒ Ω =


∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ 0
0 ∗ 0 ∗


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Mathematical framework Graph exploration with trees

Exploring the graph space

Aim: infer G.
Very large space to explore: #Gp = 2

p(p−1)
2

Spanning trees are sparse and simple structures:

no loops

(p − 1) edges

Much smaller space to explore:

#Tp = p(p−2)
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Mathematical framework Graph exploration with trees

Summing over spanning trees

Let W = (wjk)jk be a matrix with null diagonal and positive entries, and
Q its Laplacian:

[Q]jk =

{ ∑
k wjk if j = k

−wjk otherwise

Matrix-tree Theorem (Chaiken and Kleitman, 1978)

All minors of Q are equal, and for any 1 ≤ u, v ,≤ p:

|Quv | =
∑
T∈T

∏
jk∈T

wjk

Allows to sum over p(p−2) trees in O(p3) operations.
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Mathematical framework Graph exploration with trees

Exploring T with tree averaging

p(t1) = 0.12

p(t2) = 0.51

p(t3) = 0.02

p(t4) = 0.3

.

.

.

Network inference
= edge probabilities:

P{k` ∈ T} =
∑
T∈T
k`∈T

p(T )

p(T ) ∝
∏

kl∈T wkl
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Mathematical framework Poisson log-Normal model

Getting back to Gaussian data

Transformations

Copulas

Latent variables

Modeling counts with Gaussian latent parameters
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Mathematical framework Poisson log-Normal model

Poisson log-normal model

P`N model (Aitchison and Ho, 1989) for sample i and species j :

Z i ∼ N (0,Σ)

Yij | Z i ∼ P(exp(oij + xᵀ
i θj︸ ︷︷ ︸

fixed

+Zij)).

Latent variables are iid, observed data are independent conditionally
on the Z i .

A generalized multivariate linear mixed model : fixed abiotic and
random biotic effects.

Variational estimation algorithm (PLNmodels, Chiquet et al. (2018))
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Network inference from counts

Network inference from counts
i Model

ii Inference

iii Illustration
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Network inference from counts Model

General model

Assume a random tree
dependency structure T

Dependence structure in
Gaussian layer Z

Distribution for counts Y
accounting for
covariates/offsets

T

Z

Y

Matrix Tree Theorem

Gaussian Graphical Model

Poisson log-normal model
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Network inference from counts Model

P`N model with tree-shaped Gaussian parameters

T ∼
∏

kl∈T βkl/B,

Z i | T ∼ N (0,ΩT ),

Yij | Z i ∼ P(exp(oij + xᵀ
i θj + Zij)).

Gaussian mixture with pp−2 components:

p(Z ) =
∑
T∈T

p(T )N (Z | T ; 0,ΩT ).

Decomposition of the likelihood:

p(Y ,Z ,T ) = pβ(T ) pΩT
(Z | T ) pθ(Y | Z ).
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Network inference from counts Model

P`N model with tree-shaped Gaussian parameters


T ∼

∏
kl∈T βkl/B,

Z i | T ∼ N (0,ΩT )

Yij | Z i ∼ P(exp(oij + xᵀ
i θj + Zij)).

Gaussian mixture with pp−2 components:
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Network inference from counts Inference

Two-step procedure

EM algorithm (Dempster et al., 1977)

Maximizes the likelihood in presence of latent variables:

E step: Compute E[log pΘt (Y ,Z ,T ) | Y ]

M step: Θt+1 = argmaxΘ

{
E[log pΘt (Y ,Z ,T ) | Y ]

}

1 PLNmodels (Chiquet et al., 2018) gives θ̂ and approximates of Z | Y
sufficient statistics.

2 EM algorithm to get β̂.

Actually: Ẽ[log pβ(Y ,Z ,T ) | Z ] = Ẽ[log pβ(Z ,T ) | Z ] + cst.
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Network inference from counts Inference

Factorization on the edges

Tree structure factorization:

pΩT
(Z | T ) =

∏
k

p(Z k)
∏
kl∈T

p(Z k ,Z l)

p(Z k) p(Z l)

Only the 1rst and 2nd order moments of Z | Y are required, replaced by
their variational approximation from step 1.

Expression of the surrogate

Ẽ[log pβ(Z ,T ) | Z ] =
∑
j<k

Pjk log
(
βjk ψ̂jk

)
− logB + cst,

where ψ̂jk = (1− ρ̂2
jk)−n/2 and Pjk = P{jk ∈ T | Z}.
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Network inference from counts Inference

Proposed EM algorithm

The M matrix is built from the inverse of a Laplacian matrix (Meilă and
Jaakkola, 2006).

E step: p(T | Z ) factorizes on the edges.
Using the weight matrix W = β � ψ̂, all probabilities can be
computed at once:

Pjk = wjkM(W)jk (Kirshner, 2008)

M step: Requires the computation of ∂βjk (
∑

T∈T
∏

jk∈T βjk).
Closed form is available:

βt+1
jk =

P t
jk

M(βt)jk
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Network inference from counts Illustration

Oak powdery mildew

Pathogen Erysiphe alphitoides
(EA). Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome Jakuschkin et al. (2016).

Y : 116 sample of 114 microbial species counts (bacteria/fungi)

X: sampled tree, and 3 quantitative covariates

O: Different read depth for bacteria and fungi
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Network inference from counts Illustration

Edge selection frequencies

1 Create S random sub-samples using 80% of input abundance data

2

s edges probabilities

1 2e-04 0.0024 0.0414 0.2507
2 1e-04 0.0013 0.0004 0.0574
3 2e-04 0.0013 0.0008 0.0127 ...
...

...
...

...
...

3 Apply average probability 2/p threshold on all resampled probabilities

4 Fjk =
S∑

s=1

1{Ps
jk ≥ 2/p}/S

Edges selection frequencies: 0.000 0.0381 0.0190 0.7048 ...
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Network inference from counts Illustration

Oak mildew networks

Frequencies above 90%.

6.5s: average running time for one model.
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Network inference from counts Illustration

Ea neighbors: previous study

On the 39 infected samples:

Comparison with Jakuschkin et al. (2016)

20s: average running time.
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Inference from incomplete counts

Inference from incomplete counts
i Model

ii Inference

iii Illustration
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Inference from incomplete counts

Marginalization of graphs

Complete graph:

Y1

X

Y2

Y3

=⇒

Marginal graph:

Y1

Y2

Y3

Spurious edges leading to
wrong interpretation

X is a missing actor.
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Inference from incomplete counts Model

Added hidden Gaussian parameters

T

Z

Y

Z | T ∼ N (0,Ω−1
T )

=⇒

T

ZO ZH

Y

(ZO ,ZH) | T ∼ N (0,Ω−1
T )

Z : n × p ZO : n × p
ZH : n × r p′ = p + r .

Same model with r additional dimensions

Need access to sufficient statistics regarding ZH
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Inference from incomplete counts Inference

Variational EM algorithm

Finding distribution q(H) ≈ p(H | Y ):

Restricting the search space to a family Q,

Choosing q with smallest distance to p(H | Y ).

Doing so maximizes a lower-bound of the log-likelihood:

J (Θ; q) = log pΘ(Y )− KL(q(H) || pΘ(H | Y )).

Variational EM algorithm

VE step: qt+1 = argmaxq∈Q

{
J (Θt ; qt)

}
= argminq∈Q

{
KL(qt || pΘt )

}
M step: Θt+1 = argmaxΘ

{
J (Θt ; qt+1)

}
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Inference from incomplete counts Inference

Variational distribution

Two hidden variables: Z = (ZO ,ZH) and T .

q(Z ,T ) = h(Z ) g(T ).

h(Z ): Product (independence of samples i) of Gaussians:

h(Z ) =
∏
i

Np+r (Z i ; m̃i , s̃ i )

g(T ): Mean-field approximation:
g(T ) ∝ exp{Eh[log pβ(T ) + log pΩ(Z | T )︸ ︷︷ ︸

Factorizes on the edges of T

]}

g(T ) ∝
∏
kl∈T

β̃kl

Variational parameters: M̃ = (M̃O , M̃H), S̃ = (S̃O , S̃H), β̃
n × p′, n × p′, p′2
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Inference from incomplete counts Inference

Proposed algorithm

PLNmodels: Parameters regarding the observed part: θ̂, M̃O ,S̃O

Fixed for further computations.

VE step: Update variational parameters: M̃
t+1

H , S̃
t+1

H , β̃
t+1

Given by shapes of g and h distributions.

M step: Update model parameters: Ωt+1
T , βt+1

βjk = Pjk/M(β)jk with Pjk =
∑

T∈T ,T3jk g(T ),

ΩT : adaptation of ML estimators (Lauritzen, 1996).
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βjk = Pjk/M(β)jk with Pjk =
∑

T∈T ,T3jk g(T ),

ΩT : adaptation of ML estimators (Lauritzen, 1996).
p′p
′−2 × p′2/2 parameters ⇒ p′2/2 estimators.
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Inference from incomplete counts Inference

Lauritzen’s ML estimator

In a GGM with a chordal graph G (cliques C, separators S with
multiplicities ν(S)), SSD the sum of squares matrix.

General Lauritzen’s MLE

Ω̂
MLE

G = n
(∑
C∈C

[(SSDC )−1]p
′ −
∑
S∈S

ν(S)[(SSDS)−1]p
′)

The general SSD matrix do not depend on G.

The estimator uses SSD according to the graph structure.
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Inference from incomplete counts Inference

Lauritzen’s ML estimator

In a GGM with a chordal graph G (cliques C, separators S with
multiplicities ν(S)), SSD the sum of squares matrix.

General Lauritzen’s MLE

Ω̂
MLE

G = n
(∑
C∈C

[(SSDC )−1]p
′ −
∑
S∈S

ν(S)[(SSDS)−1]p
′)

If G is a tree T ∈ T :

T is chordal.

Cliques are edges: inverses of 2× 2 matrices.

Separators are nodes: S = {1, ..., p′}.
ν(k) = deg(k)− 1.
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Inference from incomplete counts Inference

Update of ΩT

We define:

SSD = Eh[ZᵀZ | Y ] = M̃
ᵀ
M̃ + diag(

∑
i

s̃ i ).

Tree simplification of Lauritzen’s formula:

ωt+1
Tjk = 1{jk ∈ T}

(
−ssd t

jk/n

1− (ssd t
jk/n)2

)
,

ωt+1
Tkk = 1−

∑
j

(ssd t
jk/n)× ωt+1

Tjk .

The estimates ωTjk are common to all trees sharing the edge jk:
estimating {ΩT ,T ∈ T } amounts to estimating p′2/2 quantities.
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Inference from incomplete counts Illustration

Barent’s sea fishes

Y : abundances of 30 fish
species in 89 sites,

X: latitude, longitude, depth
and temperature,

O: total detections per site.

Stiansen et al. (2009)

⇒ Fit with no covariates.
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Inference from incomplete counts Illustration

Barent’s fishes networks

Left: observed network (3.3 mins). Right: network inferred with one missing
actor: H (5.0 mins).

Network inference from incomplete data PhD defense November 12th, 2020 34 / 39



Inference from incomplete counts Illustration

Relationship with temperature

Cor(Mh,Temp) = 0.85 .

Direct neighbors are more linked to the
temperature than other species.
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Perspectives

Conclusion and Perspectives
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Perspectives

Conclusion

A probabilistic model for:

Inferring conditional dependency network from abundance data.

Accounting for covariates, offsets and missing actors.

An inference which:

Takes advantage of the Gaussian framework flexibility

Uses spanning trees algebraic properties to rely on determinants and
inverses of graph Laplacian matrices.

Methods are implemented in R and available.
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Perspectives

Extensions

Network analysis:
Compare networks with the estimated tree distributions.
Study interactions sign and strength available by
computing partial correlations.

Ecological specifics:
Different emission law (presence/absence), provided
there is a Gaussian latent layer of parameters.
Account for spatial dependencies within the Gaussian
covariance structure.

Direct model:
Graphical model on counts with tree averaging
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Perspectives

Contributions

Articles
Momal R., Robin S., and Ambroise C. . ”Tree-based inference
of species interaction networks from abundance data.”
Methods in Ecology and Evolution 11.5 (2020): 621-632.

Momal R., Robin S., and Ambroise C. . ”Accounting for
missing actors in interaction network inference from
abundance data.” arXiv preprint arXiv:2007.14299 (2020).

R packages
EMtree: https://rmomal.github.io/EMtree/.

nestor (Network inference from Species counTs with

missing actORs): https://rmomal.github.io/nestor.

Network inference from incomplete data PhD defense November 12th, 2020 39 / 39

https://rmomal.github.io/EMtree/
https://rmomal.github.io/nestor


References I

Aitchison, J. and Ho, C. (1989). The multivariate Poisson-log normal distribution. Biometrika, 76(4):643–653.

Beal, M. and Ghahramani, Z. (2003). The variational bayesian em algorithm for incomplete data: with application to scoring
graphical model structures. In Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, volume 7,
pages 453–464. Oxford University Press.

Chaiken, S. and Kleitman, D. J. (1978). Matrix tree theorems. Journal of combinatorial theory, Series A, 24(3):377–381.

Chiquet, J., Mariadassou, M., and Robin, S. (2018). Variational inference for probabilistic poisson pca. The Annals of Applied
Statistics, 12(4):2674–2698.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on
Information Theory, 14(3):462–467.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J.
Royal Statist. Soc., series B, 39:1–38.

Jakuschkin, B., Fievet, V., Schwaller, L., Fort, T., Robin, C., and Vacher, C. (2016). Deciphering the pathobiome: Intra- and
interkingdom interactions involving the pathogen erysiphe alphitoides. Microb Ecol, 72(4):870–880.

Kirshner, S. (2008). Learning with tree-averaged densities and distributions. In Advances in Neural Information Processing
Systems, pages 761–768.

Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series. Clarendon Press.
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Perspectives Network analysis

Signs and strengths of interactions

ρjk =
−ωjk
√
ωkkωjj

S : sample covariance matrix of Z .
Ŝ : fitted covariance matrix (ggm R package)

Ŝ = S:

-1 0 1
-1 5 45 0
1 0 48 7

Ŝ = f (S ,G):

-1 0 1
-1 5 0 0
0 0 93 0
1 0 0 7

Ŝ = f (S , Ĝ):

-1 0 1
-1 4 0 0
0 1 93 2
1 0 0 5
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Perspectives Network analysis

Signs and strengths of interactions
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Perspectives Network analysis

Network comparison

D(pβA , pβB ) =
1

2

[
KL
(
pβB || pβA

)
+ KL

(
pβA || pβB

)]
=
∑
kl

log(βA
kl/β

B
kl)
(PA

kl − PB
kl

2

)

Oak dataset:

Null Tree + D

Tree

101 14

106
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Perspectives Data specificities

A different emission law


T ∼

∏
kl∈T βkl/B,

Z i | T ∼ N (0,ΩT ),

Yij | Z i ∼ Fj(oij , x i ,Zij).

Fj : B,P, ...
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Perspectives Data specificities

Account for spatial dependencies

Separate dependencies: Γ = (Γst)1≤s,t≤n, ΣT = (σjk)1≤j ,k≤p.

{
Cov (Zsj ,Zsk) = γssσjk
Cov (Zsj ,Ztj) = σjjγst

Defining Vec(Z ) = (Z11, ...,Z1p,Z21, ...,Znp) ∈ Rn×p, we obtain:

Vec(Z ) ∼ N (0, Γ⊗ ΣT ).

Γ as a function of |s − t| reduces the number of parameters.
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Perspectives Direct network

Network inference from counts

With any marginal and bivariate distribution for counts:

T

Y

pθ(Y i | T ) =

p∏
j=1

pθ(Yij)
∏
jk∈T

pθ(Yij ,Yik)

pθ(Yij)pθ(Yik)
.

The joint distribution of counts would be a mixture on spanning trees:

pβ,θ(Y ) =
∑
T∈T

pβ(T )pθ(Y | T ).
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Simulation studies EMtree

Network inference methods comparison
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Simulation studies EMtree

Edges scoring comparison

Network inference from incomplete data PhD defense November 12th, 2020 47 / 39



Simulation studies nestor

Reconstruction of the missing actor
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Simulation studies nestor

Initialize with more potential neighbors
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Miscellaneous

Lauritzen’s notation

For any square matrix A:

([AB ]p)ij =

{
aij if {i , j} ∈ B,

0 if {i , j} /∈ B.

A =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 ⇒ [A{2,3}]
3 =

 0 ∗ ∗
0 ∗ ∗
0 0 0


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Miscellaneous

The M matrix

Lemma (Meilă and Jaakkola, 2006)

Qpp is the Laplacian matrix Q to which the the last column and row were
removed. M is then defined as follows:

[M]jk =


[(Qpp)−1]jj + [(Qpp)−1]kk − 2[(Qpp)−1]jk 1 ≤ j , k < p
[(Qpp)−1]jj k = p, 1 ≤ j < p
0 k = j
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Miscellaneous

Prevent numerical issues

The Laplacian matrix Q must be positive definite, which calls for some
numerical control of the weights β:

centering in log scale

sum constraint

Variational weights depend on the number of available samples n.
Tempering parameter α:

log β̃kl = log βkl − α(
n

2
log |R̂Tkl |+ ω̂Tkl [M

ᵀM]kl).
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