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Motivation

Context

Rising interest in jointly analysed species abundances:

Metagenomics

Microbiology

Ecology

Ecological network

Tool to better understand species interactions (direct/indirect),
eco-systems organizations (hubs?)

Allows for resilience analyses, pathogens control, ecosystem comparison,
response prediction...
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Motivation

Example

Data:

Species: bacteria, fungi...

Abundances: read counts from Next-Generation Sequencing
technologies (metabarcoding) ⇒ n × p matrix Y

Covariates: temperature, water depth... ⇒ n × d matrix X

Offsets: species-specific, sample-specific ⇒ p × p matrix O

Goal:
Infer the species interaction network Ĝ from count data Y , accounting for
X and O :

Ĝ = f (Y ,X ,O)
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Motivation

Challenges

Statistical network inference

Count data

Offsets and covariates
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Network inference General Framework

Graphical models: a statistical framework for network
inference

Example:

A1

A2

A3

A4

Connected: all variables are
dependant

Some are conditionally
independent (i.e. indirectly
dependant)

A4 is independent from (A1,A3)
conditionally on A2

P(A1, . . . ,Ap) ∝
∏

C∈CG

ψC (AC )

where CG = set of maximal cliques of G .
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With count data Model

PLN model

Poisson log-Normal distribution (Aitchison and Ho, 1989)

Zi iid ∼ Nd(0,Σ)

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eZij )

Y ∼ P`N (0,Σ)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data
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(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eoij+xT
i Θj+Zij )

Y ∼ P`N (O + XTΘ,Σ)
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Allow adjustment for covariates and offsets

Variational estimation algorithm (Chiquet et al., 2017)
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With count data Model

PLN model + Graphical model

Poisson log-Normal distribution (Aitchison and Ho, 1989)

Zi iid ∼ Nd(0,ΣG )

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eoij+xT
i Θj+Zij )

Y ∼ P`N (O + XTΘ,ΣG )

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data

Allow adjustment for covariates and offsets
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Proposed methodology

Proposed method: PLN + Spanning trees

Tree structure on PLN latent layer

EMtree model

T ∼
∏

kl βkl/B

Zi |T iid ∼ Nd(0,ΣT )

(Yij)j ⊥⊥ |Zi |T

Yij |Zij ,T ∼ P(eoij+xT
i Θj+Zij )


Y ∼ P`N (O + XTΘ,ΣT )

Zi ∼
∑
T∈T

P(T )N (0,ΣT )
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Proposed methodology Using trees

Why Spanning trees

Sparse structures:

#Gp = 2
p(p−1)

2 reduced to #Tp = p(p−2)

Suitable algebraic tool:
Matrix tree theorem (Chaiken and Kleitman, 1978)∑

T∈T

∏
(k,l)∈T

ψk,l(Y ) = det(Lψ(Y ))→ Θ(p3)

Approach: infer the network by averaging spanning trees
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Proposed methodology Using trees

Tree averaging

Z1 Z2

Z3Z4

P{T = T1|Z}

Z1 Z2

Z3Z4

P{T = T2|Z}

Z1 Z2

Z3Z4

P{T = T3|Z}

Z1 Z2

Z3Z4

P{T = T4|Z}

...

Compute edge
probabilities:

Z1 Z2

Z3Z4

P{(j , k) ∈ T |Z}

Thresholding
probabilities:

Z1 Z2

Z3Z4

P{(j , k) ∈ T |Z}
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Proposed methodology Using trees

Tree structured data

Data dependency structure relies on a tree

Likelihood factorizes on nodes and edges
(Chow and Liu, 1968):

P(Z |T ) =
d∏

j=1

P(Zj)
∏

k,l∈T
ψkl(Z ) ,

Where

ψkl(Z ) =
P(Zk ,Zl)

P(Zk)× P(Zl)
.

Rmq : with standardised gaussian data, Ψ̂ = [ψ̂kl ] ∝ (1− ρ̂Z 2)−1/2
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Proposed methodology Using trees

Direct EM algorithm ?

Complete likelihood :

P(Y ,Z ,T ) = P(T )×P(Z |T )×P(Y |Z)

log(P(Y ,Z ,T )) =
∑
k,l

1{(k,l)∈T}(log(βkl) + log(ψkl(Z)))− log(B)

+
∑
k

(log(P(Zk)) + log(P(Yk |Zk)))

Conditional expectation :

Eθ[log(P(Y ,Z ,T ))|Y ] =
∑
k,l∈V

P((k, l) ∈ T |Y ) log(βkl) +E[1{(k,l)∈T}log(ψkl(Z)|Y )]

+
∑
k

E[log(P(Zk))|Y ] +E[log(P(Yk |Zk))|Y ]− log(B)
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Proposed methodology Using trees

Two steps solution

The PLNmodels package approximates the distribution parameters:

1 Approximate Σ̂Z

2 Apply EM mixture tree to Z ∼ N (0, Σ̂Z )

Simplified conditional expectation writing:

Eθ[log(P(Z ,T ))|Z ] =
∑
k,l

P((k , l) ∈ T |Z )×log(βklψkl)−log(B)+
∑
k

log(P(Zk))

⇒ EM algorithm (E: Kirshner (2008), M: Meilă and Jaakkola (2006))
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Proposed methodology Using trees

EMtree algorithm

Input: Abundance data, covariates, offsets

1rst step: VEM algorithm to fit PLN model ⇒ θ̂, Σ̂Z .

2nd step: EM algorithm to update the βjk ⇒ conditional probabilities
for all edges.

Thresholding: Select edges with probability above the probability of
edges in a tree drawn uniformly (2/p)

Resampling: Strengthen the results: only edges selected in more than
80% of S sub-samples are kept.

Available for download at https://github.com/Rmomal/EMtree
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Raphaëlle Momal COSTNET München 2019 February 12th, 2019 13 / 20

https://github.com/Rmomal/EMtree


Evaluating performances

Evaluation strategy

Alternatives:
Two methods on transformed counts, no covariates:

SpiecEasi algorithm Kurtz et al. (2015)

gCoda Fang et al. (2017)

One taking raw counts and covariates:

MInt Biswas et al. (2016) (uses PLN model)

Simulation design:

1 Choose G and define ΣG accordingly

2 Sample count data Y from P`N (X ,ΣG )

3 Infer the network with EMtree, SpiecEasi, gCoda, and MInt

4 Compare results with presence/absence of edges (FDR, AUC)
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Evaluating performances Results

Difficulty level
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Evaluating performances Results

Network density

Effect of Erdös and Cluster structures on the evolutions of AUC median and inter-quartile intervals for parameters n, p and
ratio. Top: densities set to 2/p, bottom: densities set to 5/p.
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Application Oak data

Oak Mildew

Pathogen Erysiphe alphitoides
(EA). Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome (Jakuschkin et al., 2016).

114 sample of 94 bacterial/fungal-OTUs

Different read depth for bacteria and fungi

covariates: tree status; distance to ground, to trunk and to base of
the branch.
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Application Oak data

Inferred networks
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Application Oak data

Conclusion

Contributions:
Formal probabilistic model for network inference with
count data
Inclusion of offsets and covariates
Variational estimation algorithm

Perspectives:
Network comparison
Missing major actor (species/covariates)
Model for the inference in the observed counts layer
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Application Oak data
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Conditional probability computation

Kirchhoff’s theorem (matrix tree, Aitchison and Ho (1989))

For all W = (akl)k,l a symmetric matrix, the corresponding Laplacian Q(W ) is defined
as follows:

Quv (W ) =

{
−auv 1 ≤ u < v ≤ n∑n

i=1 avi 1 ≤ u = v ≤ n.

Then for all u et v :
|Q∗uv (W )| =

∑
T∈T

∏
{k,l}∈ET

akl

P((k, l) ∈ T |Z) =
∑

T∈T :(k,l)∈T

P(T |Z) =

∑
(k,l)∈T P(T )P(Z |T )∑

T P(T )P(Z |T )

= 1− |Q
∗
uv (βΨ−kl)|
|Q∗uv (βΨ)|

= τkl
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M step

M step

Goal : optimization of weights βkl .

argmax
βkl

 ∑
k,l∈V

τkl(log(βkl) + log(ψkl))− log(B) +
∑
k

log(P(Zk))



With high combinatorial complexity of B =
∑
T∈T

∏
k,l∈T

βkl

How to compute
∂B
∂βkl

?
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M step

βkl update

A result from Meilă Meilă and Jordan (2000)

Inverting a minor of the laplacien Q, we define M :
Muv = [Q∗−1]uu + [Q∗−1]vv − 2[Q∗−1]uv u, v < n

Mnv = Mvn = [Q∗−1]vv v < n

Mvv = 0.

On peut montrer que :
∂|Q∗uv (W )|

∂βkl
= Mkl × |Q∗uv (W )|

∂Eθ[log(P(Z ,T ))|Z ]

∂βkl
=
τkl
βkl
− 1

B

∂B

∂βkl

β̂h+1
kl =

τ hkl
Mh

kl
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M step
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