Mixture tree model for network inference

Supervision: S. Robin¹ et C. Ambroise¹²

Raphaëlle Momal

¹UMR AgroParisTech / INRA MIA-Paris ²LaMME, Evry

July 7, 2018

Context

Rising interest in jointly analysed species abundances:

- Metagenomics
- Microbiology
- Ecology

Ecological network

Tool to better understand species interactions (direct/indirect), eco-systems organizations (clusters ?)

Allows for resilience analyses, pathogens control, ecosystem comparison, response prediction...

ELE DOG

Data example

- Species: bacteria, fungi...
- Abundances: read counts from Next-Generation Sequencing technologies (metabarcoding)
- Covariates: sequencing depth, temperature, water depth...

Repeated signal : *n* samples, *p* abundances.

Data table

$$Y = [Y_{ij}]_{(i,j) \in \{1,...,n\} \times \{1,...,p\}}$$

• Y_{ij} : abundance of the j^{th} species in the i^{th} sample

Infer the species interaction network from count data Y

Challenges

Statistical network inference

Count data

Offsets and covariates

Graphical models: a statistical framework for network inference

Example:

- All variables are dependant
- Some are conditionally independent (i.e. indirectly dependeant)

 Y_4 is independent from (Y_1, Y_3) conditionally on Y_2

July 7, 2018 5 / 18

Graphical models

Definition [Lauritzen, 1996]

The joint distribution P is faithful to the graph G iff

$$P(Y_1,\ldots,Y_p)\propto\prod_{C\in\mathcal{C}_G}\psi_C(Y_C)$$

where C_G = set of maximal cliques of G.

Spanning trees

Unconstrained graph \Rightarrow very large space to explore: $\# \mathcal{G}_p = 2^{\frac{p(p-1)}{2}}$

Spanning trees are a sparse solution :

$$\left. egin{array}{c} G \mbox{ is connected} \\ G \mbox{ has no cycle} \end{array}
ight\} \; G \mbox{ has } (p-1) \mbox{ edges}$$

Much smaller space to explore:

$$\#\mathcal{T}_p = p^{(p-2)}$$

Raphaëlle Momal

Spanning trees

Unconstrained graph \Rightarrow very large space to explore: $\# \mathcal{G}_p = 2^{\frac{p(p-1)}{2}}$

Spanning trees are a sparse solution :

$$\left. egin{array}{c} G \mbox{ is connected} \\ G \mbox{ has no cycle} \end{array}
ight\} \;\; G \; {
m has } \left(p-1
ight) \; {
m edges}$$

Much smaller space to explore:

$$\#\mathcal{T}_p = p^{(p-2)}$$

Still a huge complexity...

Maximizing and summing over spanning trees

Maximum spanning tree Kruskall's algorithm

$$\hat{T} = \operatorname*{argmax}_{T} \left\{ \prod_{(k,l) \in T} \psi_{k,l}(Y) \right\} \rightarrow \Theta(p^2)$$

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]

$$\sum_{\mathcal{T}} \prod_{(k,l)\in\mathcal{T}} \psi_{k,l}(Y) = \det(L(Y)) \to \Theta(p^3)$$

Maximizing and summing over spanning trees

Maximum spanning tree Kruskall's algorithm

$$\hat{T} = \operatorname*{argmax}_{T} \left\{ \prod_{(k,l) \in T} \psi_{k,l}(Y) \right\} \rightarrow \Theta(p^2)$$

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]

$$\sum_{\mathcal{T}} \prod_{(k,l)\in\mathcal{T}} \psi_{k,l}(Y) = \det(L(Y)) \to \Theta(p^3)$$

Approach: infer the network by averaging spanning trees

Raphaëlle Momal

Mixture tree model for network inference

July 7, 2018 8 / 18

Tree averaging

Compute edge probabilities:

Thresholding probabilities:

. . .

PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

$$\left. \begin{array}{ll} Z_i \ \textit{iid} & \sim \mathcal{N}_d(0, \Sigma) \\ & (Y_{ij})_j \perp |Z_i \\ Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(0, \Sigma)$$

- Dependency structure in the Gaussian latent layer
- Easy handling of multi-variate data (contrary to Negative binomial distribution)

ELE SQA

PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

$$\left. \begin{array}{ll} Z_i \ \textit{iid} & \sim \mathcal{N}_d(0, \Sigma) \\ & (Y_{ij})_j \perp |Z_i \\ Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{o_{ij} + x_i^{\mathsf{T}}\Theta_j + Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(O + x^{\mathsf{T}}\Theta, \Sigma)$$

- Dependency structure in the Gaussian latent layer
- Easy handling of multi-variate data (contrary to Negative binomial distribution)
- Allow adjustment for covariates and offsets

PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

$$\left. \begin{array}{ll} Z_i \ \textit{iid} & \sim \mathcal{N}_d(0, \Sigma) \\ & (Y_{ij})_j \perp |Z_i \\ Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{o_{ij} + x_i^{\mathsf{T}}\Theta_j + Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(O + x^{\mathsf{T}}\Theta, \Sigma)$$

- Dependency structure in the Gaussian latent layer
- Easy handling of multi-variate data (contrary to Negative binomial distribution)
- Allow adjustment for covariates and offsets
- Variational estimation algorithm [Chiquet et al., 2017]

Approach: Infer the latent Gaussian network with an VEM algorithm.

Gaussian Graphical Models (GGM)

Gaussian distribution:

 $Y_i \sim \mathcal{N}_p(\mu, \Sigma)$, $\mu =$ vector of means, $\Sigma =$ covariance matrix.

A nice property:

Inverse covariance matrix

$$\Sigma^{-1} = \Omega \propto \left[\begin{array}{rrrr} 1 & .5 & .5 & 0 \\ .5 & 1 & .5 & .5 \\ .5 & .5 & 1 & 0 \\ 0 & .5 & 0 & 1 \end{array} \right]$$

-

Gaussian Graphical Models (GGM)

Gaussian distribution:

 $Y_i \sim \mathcal{N}_p(\mu, \Sigma)$, $\mu =$ vector of means, $\Sigma =$ covariance matrix.

A nice property:

Inverse covariance matrix Y_3 $\Sigma^{-1} = \Omega \propto \left| \begin{array}{cccc} 1 & .5 & .5 & 0 \\ .5 & 1 & .5 & .5 \\ .5 & .5 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{array} \right|$ Y_4 Y_1 Y_2 Glasso on gaussian data: $\widehat{\Omega}_{\lambda} = \arg \min_{\Omega \in S_{d}^{+}} \left\{ L(Y, \Omega) + \lambda \sum_{i \neq j} |\omega_{ij}| \right\}$ \Rightarrow SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts Raphaëlle Momal

Simulation design

- **1** Choose G and define Ω accordingly
- **2** Sample count data **Y** from $\mathcal{PLN}(0, \Omega^{-1})$ with possible covariates
- 3 Infer the network with PLN + mixture tree VEM and SpiecEasi
- 4 Compare results with AUC (presence/absence of edges)

 \Rightarrow 40 replicates for each setting (*p*, *n*, edge probability)

Results: Erdös, 20 nodes

Oak Mildew

Pathogen Erysiphe alphitoides (EA).

Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome [Jakuschkin et al., 2016].

- 114 sample of 94 microbial species counts (bacteria/fungi)
- Different read depth for bacteria and fungi: unsuited for normalization with SpiecEasi
- 3 quantitative covariates

We are interested in EA and F19, a second major fungi.

Model with covariates

Regression coefficients

	Covariates ($ imes 10^{-2}$)		
	to base	to trunk	to ground
EA	-2.00	2.15	-2.51
F19	2.19	-1.72	1.43

Degree estimation

	Offset	Distances
EA	2.20	1.86
F19	3.03	2.80

Inferred networks

ELE DOG

Conclusion

Contributions:

- Formal probabilistic model for network inference with count data
- EM Estimation algorithm
- Inclusion of offsets and covariates

Perspectives:

- Method for determining the threshold
- Network comparison
- Model for the inference in the observed counts layer
- Missing major actor (species/covariable)

= 900

Acknowledgments

Special thanks :

Supervisors Stéphane Robin, Christophe Ambroise PLN team Julien Chiquet (MIA-Paris), Mahendra Mariadassou (INRA Jouy) Data Corinne Vacher (INRA Bordeaux)

Contact :

email raphaelle.momal@agroparistech.fr Web Rmomal.github.io

References I

Aitchison, J. and Ho, C. (1989).

The multivariate Poisson-log normal distribution.

Biometrika, 76(4):643-653.

Chaiken, S. and Kleitman, D. J. (1978).

Matrix tree theorems.

Journal of combinatorial theory, Series A, 24(3):377–381.

Chiquet, J., Mariadassou, M., and Robin, S. (2017).
 Variational inference for probabilistic Poisson PCA.
 Technical report, arXiv:1703.06633.

-

References II

```
Jakuschkin, B., Fievet, V., Schwaller, L., Fort, T., Robin, C., and Vacher, C. (2016).
```

Deciphering the pathobiome: Intra- and interkingdom interactions involving the pathogen erysiphe alphitoides.

Microb Ecol, 72(4):870–880.

doi:10.1007/s00248-016-0777-x.

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A. (2015).
 Sparse and compositionally robust inference of microbial ecological networks.

PLoS computational biology, 11(5):e1004226.

Lauritzen, S. L. (1996).

Graphical Models.

EL OQO

• • = • • = •