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Motivation

Context

Rising interest in jointly analysed species abundances:

Metagenomics

Microbiology

Ecology

Ecological network

Tool to better understand species interactions (direct/indirect), eco-systems organizations
(clusters ?)

Allows for resilience analyses, pathogens control, ecosystem comparison, response prediction...
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Motivation

Data example

Species: bacteria, fungi...

Abundances: read counts from Next-Generation Sequencing technologies (metabarcoding)

Covariates: sequencing depth, temperature, water depth...

Repeated signal : n samples, p abundances.

Data table

Y = [Yij ](i ,j)∈{1,...,n}×{1,...,p}

Yij : abundance of the j th species in the i th sample

Infer the species interaction network from count data Y
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Motivation

Challenges

Statistical network inference

Count data

Offsets and covariates
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Network inference General Framework

Graphical models: a statistical framework for network inference

Example:

Y1

Y2

Y3

Y4

All variables are dependant

Some are conditionally independent (i.e.
indirectly dependeant)

Y4 is independent from (Y1,Y3)
conditionally on Y2
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Network inference General Framework

Graphical models

Definition [Lauritzen, 1996]

The joint distribution P is faithful to the graph G iff

P(Y1, . . . ,Yp) ∝
∏

C∈CG

ψC (YC )

where CG = set of maximal cliques of G .

Y1

Y2

Y3

Y4

P(Y1,Y2,Y3,Y4) ∝
ψ1(Y1,Y2,Y3)× ψ2(Y3,Y4)
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Network inference Using trees

Spanning trees

Unconstrained graph ⇒ very large space to explore: #Gp = 2
p(p−1)

2

Spanning trees are a sparse solution :

G is connected
G has no cycle

}
G has (p − 1) edges

Much smaller space to explore:

#Tp = p(p−2)

Still a huge complexity...
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskall’s algorithm

T̂ = argmax
T

 ∏
(k,l)∈T

ψk,l(Y )

→ Θ(p2)

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]∑
T

∏
(k,l)∈T

ψk,l(Y ) = det(L(Y ))→ Θ(p3)

Approach: infer the network by averaging spanning trees
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Network inference Using trees

Tree averaging

Y1 Y2

Y3Y4

P{T = T1|Y }

Y1 Y2

Y3Y4

P{T = T2|Y }

Y1 Y2

Y3Y4

P{T = T3|Y }

Y1 Y2

Y3Y4

P{T = T4|Y }

...

Compute edge
probabilities:

Y1 Y2

Y3Y4

P{(j , k) ∈ T |Y }

Thresholding
probabilities:

Y1 Y2

Y3Y4

P{(j , k) ∈ T |Y }
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With count data Model

PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

Zi iid ∼ Nd(0,Σ)

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eZij )

Y ∼ PLN (0,Σ)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data (contrary to Negative binomial distribution)
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With count data Model

PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

Zi iid ∼ Nd(0,Σ)

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eoij+xT
i Θj+Zij )

Y ∼ PLN (O + xTΘ,Σ)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data (contrary to Negative binomial distribution)

Allow adjustment for covariates and offsets

Variational estimation algorithm [Chiquet et al., 2017]

Approach: Infer the latent Gaussian network with an VEM algorithm.
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Simulation Competitor

Gaussian Graphical Models (GGM)

Gaussian distribution:

Yi ∼ Np(µ,Σ), µ = vector of means, Σ = covariance matrix.

A nice property:

Y1

Y2

Y3

Y4

Inverse covariance matrix

Σ−1 = Ω ∝


1 .5 .5 0
.5 1 .5 .5
.5 .5 1 0
0 .5 0 1



Glasso on gaussian data: Ω̂λ = arg minΩ∈S+
d

{
L(Y ,Ω) + λ

∑
i 6=j |ωij |

}
⇒ SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts

Raphaëlle Momal Mixture tree model for network inference July 7, 2018 11 / 18



Simulation Competitor

Gaussian Graphical Models (GGM)

Gaussian distribution:

Yi ∼ Np(µ,Σ), µ = vector of means, Σ = covariance matrix.

A nice property:

Y1

Y2

Y3

Y4

Inverse covariance matrix

Σ−1 = Ω ∝


1 .5 .5 0
.5 1 .5 .5
.5 .5 1 0
0 .5 0 1


Glasso on gaussian data: Ω̂λ = arg minΩ∈S+

d

{
L(Y ,Ω) + λ

∑
i 6=j |ωij |

}
⇒ SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts
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Simulation

Simulation design

1 Choose G and define Ω accordingly

2 Sample count data Y from PLN (0,Ω−1) with possible covariates

3 Infer the network with PLN + mixture tree VEM and SpiecEasi

4 Compare results with AUC (presence/absence of edges)

⇒ 40 replicates for each setting (p, n, edge probability)
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Simulation

Results: Erdös, 20 nodes

Raphaëlle Momal Mixture tree model for network inference July 7, 2018 13 / 18



Application Oak data

Oak Mildew

Pathogen Erysiphe alphitoides
(EA). Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome [Jakuschkin et al., 2016].

114 sample of 94 microbial species counts (bacteria/fungi)
Different read depth for bacteria and fungi: unsuited for normalization with SpiecEasi
3 quantitative covariates

We are interested in EA and F19, a second major fungi.
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Application Oak data

Model with covariates

Regression coefficients

Covariates (×10−2)
. to base to trunk to ground

EA -2.00 2.15 -2.51
F19 2.19 -1.72 1.43

Degree estimation

Offset Distances

EA 2.20 1.86
F19 3.03 2.80
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Application Oak data

Inferred networks
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Application Oak data

Conclusion

Contributions:
Formal probabilistic model for network inference with count data
EM Estimation algorithm
Inclusion of offsets and covariates

Perspectives:
Method for determining the threshold
Network comparison
Model for the inference in the observed counts layer
Missing major actor (species/covariable)
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Application Oak data
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