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Context

Rising interest in jointly analysed species abundances:
m Metagenomics
m Microbiology
m Ecology

Ecological network

Tool to better understand species interactions (direct/indirect), eco-systems organizations
(clusters ?)

Allows for resilience analyses, pathogens control, ecosystem comparison, response prediction...
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Data example

m Species: bacteria, fungi...
m Abundances: read counts from Next-Generation Sequencing technologies (metabarcoding)

m Covariates: sequencing depth, temperature, water depth...

Repeated signal : n samples, p abundances.

Data table

Y = [Yjlijetw, ..nyx{1,...p}
= Yj: abundance of the j* species in the ith sample

Infer the species interaction network from count data Y
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Challenges

m Statistical network inference

m Count data

m Offsets and covariates
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Network inference General Framework

Graphical models: a statistical framework for network inference

Example:

@ m All variables are dependant

m Some are conditionally independent (i.e.

indirectly dependeant)

Y4 is independent from (Y1, Y3)
conditionally on Y5,
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Network inference General Framework

Graphical models

Definition [Lauritzen, 1996
The joint distribution P is faithful to the graph G iff

P(Y1,...,Yp) o< ] #c(Ye)

CeCqg

where Cg = set of maximal cliques of G.

(%)

P(Y1,Y2, Y3, Ya)
Y1(Y1, Y2, Y3) X ¢2(Y3, Ya)
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Network inference Using trees

Spanning trees
. (p—1)
Unconstrained graph = very large space to explore: #G, = 275

Spanning trees are a sparse solution :

G is connected

G has no cycle } G has (p— 1) edges

Much smaller space to explore:
6001  mm any

—_ == Spanning tree ( 2)
w —
B 400 #Tp=p*
£
=
2 200

0
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Network inference Using trees

Spanning trees
. (p—1)
Unconstrained graph = very large space to explore: #G, = 275

Spanning trees are a sparse solution :

G is connected

G has no cycle } G has (p— 1) edges

Much smaller space to explore:
6001  mm any

i~ == Spanning tree ( 2)
B 400 #Tp=p*
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskall's algorithm

T =argmaxq [ ¢xi(Y)p — 0(p%)
T (kNeT

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]

DI vra(Y) = det(L(Y)) = ©(p?)

T (kI)ET
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskall's algorithm

T =argmaxq [ ¢xi(Y)p — 0(p%)
T (kNeT

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]

DI vra(Y) = det(L(Y)) = ©(p?)

T (k,heT

Approach: infer the network by averaging spanning trees
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Tree averaging

OO OSSO OO RN OO

@@@@@@

P{T = T1|Y} P{T = T1|Y} P{T = T3|Y} P{T = T4|Y}

) %) v)
C d " Thresholdi
oo AL pme

P{U,k) € TIY} P{U, k) e TIY}
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PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989

Ziid  ~ Ny(0,X)
(Yy)i L1Zi ¢ Y ~PLN(O,T)
VilZy ~P(e)

m Dependency structure in the Gaussian latent layer

m Easy handling of multi-variate data (contrary to Negative binomial distribution)
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PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989

Ziiid  ~ Ny(0,%)
(Vi) L1z Y ~PLN(O +x"0,X)

VilZj ~ P(eo )

m Dependency structure in the Gaussian latent layer
m Easy handling of multi-variate data (contrary to Negative binomial distribution)

m Allow adjustment for covariates and offsets
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PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989

Z:iid  ~ Ng(0,%)
(Yi)i L 1Z; Y ~PLN(O+x70,X)

YilZj ~ P(eortOt2)

m Dependency structure in the Gaussian latent layer
m Easy handling of multi-variate data (contrary to Negative binomial distribution)
m Allow adjustment for covariates and offsets

m Variational estimation algorithm [Chiquet et al., 2017]

Approach: Infer the latent Gaussian network with an VEM algorithm.
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Simulation Competitor

Gaussian Graphical Models (GGM)

Gaussian distribution:

Y; ~ Np(p, X), = vector of means, ¥ = covariance matrix.

A nice property:
Inverse covariance matrix

@ 1
&\@/ e
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Simulation Competitor

Gaussian Graphical Models (GGM)

Gaussian distribution:

Y; ~ Np(p, X), = vector of means, ¥ = covariance matrix.

A nice property:
Inverse covariance matrix

1
Yy l-Q« g
0

Glasso on gaussian data: )y = arg maneS+ LY, Q)+ A2 |wu|}

5
5
1
0

GG I
= O >, ©

= SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts
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Simulation

Simulation design

Choose G and define 2 accordingly

Sample count data Y from PLN(0,Q271) with possible covariates
Infer the network with PLN + mixture tree VEM and SpiecEasi

Compare results with AUC (presence/absence of edges)

= 40 replicates for each setting (p, n, edge probability)
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Simulation

Results: Erdos, 20 nodes

Without covariates With covariates
1.04 g 1.04 s—g-
i I =
\1“ f\+
0.9 xi 0.9- *
Y Hog o H
0.8 - 0.5+ P
S IRNRERIF | { t
= 3 = d
0.7 \{*¢ 0.7 * + * +
0.6+ 0.64
0.5+ 0.5
005 040 045 020  0.25 005 040 045 020 025
Edge probability Edge probability

~&= EM -#= 1 step —# SpiecEasi
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Oak Mildew

Path Erysiphe alphitoid,
(EaA)ogen rysiphe aiphitoldes Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome [Jakuschkin et al., 2016].

m 114 sample of 94 microbial species counts (bacteria/fungi)
m Different read depth for bacteria and fungi: unsuited for normalization with SpiecEasi
m 3 quantitative covariates

We are interested in EA and F19, a second major fungi.
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Application Oak data

Model with covariates

Regression coefficients

Covariates (x1072)
. to base to trunk to ground
EA | -2.00 2.15 -2.51
F19 | 2.19 -1.72 1.43

Degree estimation

| Offset Distances
EA | 2.20 1.86
F19 | 3.03 2.80

Raphaélle Momal Mixture tree model for network inference July 7, 2018 15 / 18



Application | Oak data

Inferred networks

Offset only With covariates
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Application | Oak data

Conclusion

Contributions:
m Formal probabilistic model for network inference with count data
m EM Estimation algorithm

Inclusion of offsets and covariates

Perspectives:

Method for determining the threshold

Network comparison

Model for the inference in the observed counts layer
Missing major actor (species/covariable)
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