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I. Introduction 
In the past decade, ecological networks have become a key tool to describe interactions              
between species and better understand the dynamics of a whole ecosystem or anticipate its              
response to a given change. Such interaction networks can be inferred based on the              
observation of the respective abundance of each species. Metagenomics relies on           
Next-Generation Sequencing (NGS) technologies to evaluate the (relative) abundance of          
microbial species in a given medium under varying experimental conditions or across            
replicates. A typical metabarcoding experiment results in a vector of read counts associated             
with each species under study. 
From a statistical perspective, network inference is usually considered in the framework of             
probabilistic graphical models. A huge statistical literature exists about this problem in the             
Gaussian case, that is when the data consists in continuous observations. These methods             
need to be adapted to count data. 
In this work, we propose a comprehensive statistical framework for the inference of             
ecological networks based on metagenomic counts. To this aim, we use the Poisson             
log-normal (PLN) model which provides a generic description for multivariate count data.            
The PLN model accounts for the specificities of metagenomic data such as over-dispersion             
or sequencing depth heterogeneity. More importantly, the PLN model allows to correct for             
the effect of covariates, which is critical to avoid the detection of spurious edges in the                
graph. 
 

II. Model 
PLN model. ​The negative binomial distribution has become the reference distribution for the             
analysis of NGS read counts. This distribution is also known as the Poisson-Gamma             
distribution as it consists in a Poisson distribution combined with a latent Gamma layer.              
Unfortunately, this model does not generalizes easily to multivariate count data as no             
generic version of the Gamma distribution exists. The Poisson log-normal distribution is            
similar to the Poisson-Gamma distribution, except that the latent Gamma layer is replaced             
with a latent log-normal layer. This PLN distribution displays the same over-dispersion            
feature as the Poisson-Gamma but generalizes easily to multivariate data via the            
multivariate normal distribution (Aitchison and Ho, 1989). The model can be described as             
follows: for each observation, a random Gaussian vector with as many dimensions as             



 

species is first drawn; each observed count is then drawn conditionally on the corresponding              
coordinate of the latent unobserved Gaussian vector. The dependency between the counts            
is therefore encoded in the covariance matrix of the latent Gaussian vector. An important              
feature is that, as opposed to other multivariate count distributions (Inoue & al, 2018), the               
correlations between species abundances can be either positive or negative, preserving the            
sign of the terms of the Gaussian covariance matrix. 
 
 
Graphical models. ​A graphical model is a graphical representation of the dependency            
structure between a set of variables. Briefly speaking, an edge is drawn between two              
variables if the dependence between them does not result from the effect of the other               
variables. In our example, the variables are the respective species abundances and two             
species are connected if they are in direct interaction. One major advantage of the PLN               
model is that it can take advantage of the methods that were developed for network               
inference in the framework of Gaussian Graphical Models (GGM). Our idea is to define the               
ecological network as the graphical model of the Gaussian latent layer of the PLN model. 
 
 
Tree-based network inference. ​All network inference methods have to face the fact that the              
number of possible network grows super-exponentially with the number of species. This            
makes the exhaustive exploration of the set of all possible graphs combinatorially intractable.             
To circumvent this problem, we choose to model the network as a random sample in the set                 
of spanning trees. This assumption is consistent with the expectation that ecological            
networks are sparse. It also allows us to take advantage of combinatorial results about the               
optimization or the summation over the whole set of spanning trees. 
 
Proposed model. ​Put together, the statistical model we present is a hierarchical model             
composed of two layers of hidden parameters: 

● the dependence tree of the Gaussian layer of the PLN model, 
● the Gaussian layer of the PLN model itself. 

 

III. Inference 
Because of the presence of Gaussian latent layer, the PLN model is an incomplete data               
model for which the Expectation-Maximization (EM) algorithm could be considered.          
Unfortunately, the conditional distribution of the hidden layer given the observed data is             
intractable so the EM algorithm does not apply directly. However, a proxy of this distribution               
can be obtained using variational techniques (Wainwright & Jordan, 2008). This results in a              
Variational EM (VEM) that has been implemented in the ‘PLNmodels' R-package available            
on github (​https://github.com/jchiquet/PLNmodels​, Chiquet, Mariadassou & Robin, 2018). 
 
The inference of the PLN models provides an estimate of the covariance matrix of the               
Gaussian layer. Hence we are brought to a network inference problem in the GGM context,               
where a usual method is the Graphical LASSO (Glasso). This penalized approach allows for              
a sparse inference. 

https://github.com/jchiquet/PLNmodels


 

As explained in Section II, we adopt a different approach, assuming the graphical model is               
drawn in the set of spanning trees. This model is similar to the mixture of tree-shaped                
graphical models considered by (Meila & Jaakola, 2006). The set of spanning trees displays              
several interesting combinatorial features, which makes maximization (Chow & Liu, 1968) or            
summation (Chaiken & al, 1978) achievable in polynomial time. Observe that the mixture             
assumption widens the range of graphs we are able to infer as it allows the presence of                 
cycles and cliques. 
  
Because this second layer of the model is a mixture, its inference can be carried out via an                  
EM algorithm. Part of our contribution is to develop a new EM algorithm along which the                
conditional distribution of the tree given the data is computed. Unlike what is usually found in                
the literature, the conditional probability given the data for each edge to be part of the                
graphical model is updated, and not considered fixed. Once the conditional probability of             
each edge is computed, the inferred graph is defined by the most probable edges. 
  

IV. Simulation 
We tested our method with several dependence structures and several densities of edges. In              
addition to spanning trees, we considered Erdös structures, which are random graphs,            
scale-free structures which are rather sparse and clusters. The latter are very different from              
the other structures and should be challenging for our method. The number of vertices in the                
graph has been set between 10 and 30, edge probability varies between 0.025 and 0.25 and                
the number of observations between 20 and 100. 
  
Considering the original graph as ground truth, our approach allows the inference of a family               
of nested graphs derived from the thresholding of the estimated conditional edges            
probabilities. The Area Under the Receiver Operating Curve (AUC) is used as a summary              
measure of the graph reconstruction quality. The AUC of our method was compared to that               
of the glasso for all settings and dependence structures. In a specific experiment, inferences              
are done on 40 different graphs. 
  
Our method performs well on trees, and as expected is less efficient on the other cases but it                  
is still comparable to or better than the glasso. In all tested settings, in terms of median of                  
AUC our method is about 5% above glasso with trees, about 3% in the scale-free structure                
and only by 1% in the cluster. On the Erdös structure the two methods perform identically.                
The medians of AUC are around 80% when only the number of vertices varies, however               
they increase significantly with the number of observations : 62% for 20 observation, and              
85% for 100 with our method. 
 

V. Illustration 
The fungal Erysiphe alphitoides (EA) is the causal agent of oak powdery mildew. Jakushkin              
et al (2016) study its pathobiome via microbial network inference and emphasize the             
importance of covariates. The sampling of oak leaves microbiome was done on three             
different oaks with different infection status. The corresponding data table is composed of             
116 samples of 94 species of fungi and bacteria of oak leaves, including the EA agent.                



 

Several covariates are available, among which the tree identifier, the distance from the leaf              
to the tree base, and a measure of infection. 
Relative species abundances were evaluated by metabarcoding, for which it is necessary to             
correct for depth of coverage. Treating the later as an offset, we fitted four PLN regression                
models (all including offsets) on these data, including covariates one by one. They are              
nested and take an additional variable among those previously mentioned. 
For each of the four models, we computed the conditional probabilities of edges to be part of                 
the network. To define the threshold above which an edge is included in the network, we                
evaluated the overall proportion of absent edges using a multiple testing technique proposed             
by Storey (2002). 
As expected, the more covariates are included in the model, the less edges are inferred in                
the corresponding network, underlying the benefits of taking covariates into account. Edges            
removed at each step can be interpreted as spurious edges from the preceding step that               
were actually reflecting the effect of the included covariate. The model only adjusting for the               
offset contains 2630 edges, whereas the one with four covariates has 2300 edges. Between              
these two models all nodes lose 7 connexions on average. Regarding the pathogen EA              
across all models, its major role in the organization of the pathobiome is proven by its                
degree remaining stable at about 60 (59, 64, 63 and 60 respectively). 
 
 

VI. Discussion 
We provide a comprehensive statistical framework for the inference of ecological networks            
based on NGS read counts, which includes a formal probabilistic model and the associated              
estimation algorithm. Our model infers interaction networks and easily adapts to different            
experimental conditions by enabling the user to account for offsets and covariates. 
  
Our final algorithm uses successively a VEM algorithm for the PLN and an EM algorithm for                
the inference of the tree structure. The latent layer of the PLN is first inferred using the                 
PLNmodels package, then the EM algorithm infers the network. A technical perspective            
consists in building an algorithm which encompasses our EM algorithm in the M step of the                
VEM algorithm, within the PLNmodels package. 
  
Identifying an estimator for the number of edges in the final graph is crucial to the network                 
inference. The multiple testing heuristic we developed to estimate the overall density of the              
network seems to work well in practice, yet its reliability needs to be further investigated. 
 
 
Finally, a challenging issue for network inference is the possibility that some species ​of or               
covariate having a strong impact on the ecosystem was not measured, resulting in spurious              
edges (see the illustration section). The automatic detection and estimation of such missing             
variable can be considered in the context of tree-shaped graphs. 
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