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Raphaëlle Momal
Supervision: S. Robin1 and C. Ambroise

2

1UMR AgroParisTech / INRA MIA-Paris
2LaMME, Evry

December 8th, 2020

R. Momal netbio 2020 December 8th, 2020 1 / 44



Introduction Biological context

Species co-occurrence network

Integrated plankton community network related to carbon export at 150m (Guidi et. al,
2016)
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Introduction Biological context

Reasons for species co-occurrence

Two species can co-occur due to:

1 a similar response to the same environmental variable,

2 their response to a third species prensence/abundance (mediator
species), even if they do not directly depend on one another,

3 their direct association.

Taking environmental effects into account is paramount, yet not enough to
separate (2) from (3).
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Introduction Type of network

Simple dependencies

After adjusting for environmental covariates, we obtain (residual)
correlations between species.

correlation 6= 0 ⇐⇒ dependence
(Gaussian framework)

Spurious dependence

×

Dependencies can be direct, or
indirect/spurious and due to a
mediator species (or unaccounted
environmental factor).

⇒ Conditional dependencies are
always direct links.
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Introduction Type of network

Interpretation of conditional dependencies

Measure of the dependence link between two species after having
controlled for the effect of all others.

Regression: Y = βXX + βZZ + ε.

Y and X are dependent conditionnally on Z ⇐⇒ βX 6= 0.

Partial correlations quantify this dependence: correlation between the
residuals of the regressions of X with Z and of Y with Z (cos(ϕ)).

Graphically: are the projections of X and
Y on the hyperplan of Z orthogonal?
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Introduction Type of network

Two scenarios

Toy-example with Gaussian data (Popovic et al.,

2019)

1rst line: A ∼ B,
2nd line: A � B.

Same Cor(A,B) in
both scenarios.

Only conditional
dependences can
separate scenarios.
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Introduction Problematic

Aim of network inference from abundance data

EFI ELA GDE GME
71 1 5 6

118 2 3 0
69 0 6 2
56 0 0 0

0 1 1 0
0 0 2 0
...

...
...

...

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

(a) species abundances Y (b) covariates X (c) G

Data sample from the Fatala river dataset (Baran 1995).
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Introduction Problematic

Incomplete data: a missing species/covariate

Marginalization of graphs:

Complete graph:

Y1

X

Y2

Y3

=⇒

Marginal graph:

Y1

Y2

Y3

Spurious edges leading to
wrong interpretation

X is a missing actor.
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Introduction Problematic

Incomplete abundance data

EFI ELA GDE GME
71 1 5 6

118 2 3 0
69 0 6 2
56 0 0 0

0 1 1 0
0 0 2 0
...

...
...

...

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

=⇒ ?

(a) incomplete abundances Y (b) incomplete X (c) complete G
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Introduction Problematic

Example with x ∼ N (1, 1)
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Mathematical framework

Mathematical framework
i Graphical Models

ii Graph exploration with trees

iii Poisson log-Normal model
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Mathematical framework Graphical Models

Graphical Models

Y1

Y2

Y3

Y4

Global Markov:
Y2 separates Y3 from Y4 ⇒ Y3 ⊥⊥ Y4 | Y2.

Hammersley-Clifford:
Strictly positive and continuous density f :

f global Markov ⇐⇒ f (Y ) =
∏
c∈C

ψ(Yc).

Here C =
{
{1, 2, 3}, {2, 4}

}
:

f (Y ) = ψ(Y1,Y2,Y3)× ψ(Y2,Y4)
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Mathematical framework Graphical Models

Gaussian Graphical Models (GGM)

Let Y ∼ N (µ,Σ) with precision matrix Ω = Σ−1 = (ωjk)jk :

f (Y ) ∝
∏

j ,k,,ωjk 6=0

exp(−YkωjkYj/2).

Faithful Markov property:

Y1

Y2

Y3

Y4
⇐⇒ Ω =


∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ 0
0 ∗ 0 ∗


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Mathematical framework Graphical Models

Gaussian precision terms and conditional dependence

Regression : X ∼ N (µ,Ω−1). In the regression Xj =
∑

k 6=j θjkXk + εj , it

holds that εj ∼ N (0, ω−1
jj ) and θjk = −ωjk/ωjj . Thus ωjk ∝ θjk

Covariance/Correlation matrix

Precision matrix (ωjk)jk

Partial correlations (ρjk = −ωjk/
√
ωjjωkk)

Inverse

-Normalized

partial correlation/precision 6= 0 ⇐⇒ conditional dependence
(Gaussian framework)
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Mathematical framework Graph exploration with trees

Exploring the graph space

Aim: infer G.
Very large space to explore: #Gp = 2

p(p−1)
2

Spanning trees are sparse and simple structures:

no loops

(p − 1) edges

Much smaller space to explore:

#Tp = p(p−2)
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Mathematical framework Graph exploration with trees

Summing over spanning trees

Let W = (wjk)jk be a matrix with null diagonal and positive entries, and
Q its Laplacian:

[Q]jk =

{ ∑
k wjk if j = k

−wjk otherwise

Matrix-tree Theorem (Chaiken and Kleitman, 1978)

All minors of Q are equal, and for any 1 ≤ u, v ,≤ p:

|Quv | =
∑
T∈T

∏
jk∈T

wjk

Allows to sum over p(p−2) trees in O(p3) operations.
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Mathematical framework Graph exploration with trees

Exploring T with tree averaging

p(t1) = 0.12

p(t2) = 0.51

p(t3) = 0.02

p(t4) = 0.3

.

.

.

Network inference
= edge probabilities:

P{k` ∈ T} =
∑
T∈T
k`∈T

p(T )

p(T ) ∝
∏

kl∈T wkl
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Mathematical framework Poisson log-Normal model

Getting back to Gaussian data

Transformations

Copulas

Latent variables

Modeling counts with Gaussian latent parameters
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Mathematical framework Poisson log-Normal model

Poisson log-normal model

P`N model (Aitchison and Ho, 1989) for sample i and species j :

Z i ∼ N (0,Σ)

Yij | Z i ∼ P(exp(oij + xᵀ
i θj︸ ︷︷ ︸

fixed

+Zij)).

Latent variables are iid, observed data are independent conditionally
on the Z i .

A generalized multivariate linear mixed model : fixed abiotic and
random biotic effects.

Variational estimation algorithm (PLNmodels, Chiquet et al. (2018))
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Network inference from incomplete counts

Network inference from incomplete
counts

i Model

ii Inference

iii Simulations & Illustration
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Network inference from incomplete counts Model

General model

Assume a random tree
dependency structure T

Dependence structure in
Gaussian layer Z

Distribution for counts Y
accounting for
covariates/offsets

T

Z

Y

Matrix Tree Theorem

Gaussian Graphical Model

Poisson log-normal model
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Network inference from incomplete counts Model

P`N model with tree-shaped Gaussian parameters


T ∼

∏
kl∈T βkl/B,

Z i | T ∼ N (0,ΩT )

Yij | Z i ∼ P(exp(oij + xᵀ
i θj + Zij)).

Gaussian mixture with pp−2 components:

p(Z ) =
∑
T∈T

p(T )N (Z | T ; 0,ΩT ).

Decomposition of the likelihood:

p(Y ,Z ,T ) = pβ(T ) pΩT
(Z | T ) pθ(Y | Z ).
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Network inference from incomplete counts Model

Marginalization of graphs

Complete graph:

Y1

X

Y2

Y3

=⇒

Marginal graph:

Y1

Y2

Y3

Spurious edges leading to
wrong interpretation

X is a missing actor.
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Network inference from incomplete counts Model

Added hidden Gaussian parameters

T

Z

Y

Z | T ∼ N (0,Ω−1
T )

=⇒

T

ZO ZH

Y

(ZO ,ZH) | T ∼ N (0,Ω−1
T )

Z : n × p ZO : n × p
ZH : n × r p′ = p + r .
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Network inference from incomplete counts Inference

Variational EM algorithm

Finding distribution q(H) ≈ p(H | Y ):

Restricting the search space to a family Q,

Choosing q with smallest distance to p(H | Y ).

Doing so maximizes a lower-bound of the log-likelihood:

J (Θ; q) = log pΘ(Y )− KL(q(H) || pΘ(H | Y )).

Variational EM algorithm

VE step: qt+1 = argmaxq∈Q

{
J (Θt ; qt)

}
= argminq∈Q

{
KL(qt || pΘt )

}
M step: Θt+1 = argmaxΘ

{
J (Θt ; qt+1)

}
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Network inference from incomplete counts Inference

Variational distribution

Two hidden variables: Z = (ZO ,ZH) and T .

q(Z ,T ) = h(Z ) g(T ).

h(Z ): Product (independence of samples i) of Gaussians:

h(Z ) =
∏
i

Np+r (Z i ; m̃i , s̃ i )

g(T ): Mean-field approximation:
g(T ) ∝ exp{Eh[log pβ(T ) + log pΩ(Z | T )︸ ︷︷ ︸

Factorizes on the edges of T

]}

g(T ) ∝
∏
kl∈T

β̃kl

Variational parameters: M̃ = (M̃O , M̃H), S̃ = (S̃O , S̃H), β̃
n × p′, n × p′, p′2
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Network inference from incomplete counts Inference

Proposed algorithm

PLNmodels: Parameters regarding the observed part: θ̂, M̃O ,S̃O

Fixed for further computations.

VE step: Update variational parameters: M̃
t+1

H , S̃
t+1

H , β̃
t+1

Given by shapes of g and h distributions.

M step: Update model parameters: Ωt+1
T , βt+1

ΩT : adaptation of ML estimators (Lauritzen, 1996).
βjk : Kirshner (2008); Meilă and Jaakkola (2006) with
numerical control.
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Network inference from incomplete counts Inference

M step: ΩT

{ΩT ,T ∈ T } involves a very large number of parameters:

(size of T )× (size of ΩT ) = p′p
′−2 × p′(p′ − 1)/2︸ ︷︷ ︸
>1025 for 20 nodes

.

Using Lauritzen’s ML estimator: p′(p′ − 1)/2 estimators (only one
matrix!).
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Network inference from incomplete counts Inference

Lauritzen’s ML estimator

In a GGM with a chordal graph G (cliques C, separators S with
multiplicities ν(S)), SSD the sum of squares matrix.

General Lauritzen’s MLE

Ω̂
MLE

G = n
(∑
C∈C

[(SSDC )−1]p
′ −
∑
S∈S

ν(S)[(SSDS)−1]p
′)

The general SSD matrix do not depend on G.

The estimator uses SSD according to the graph structure.
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Network inference from incomplete counts Inference

Lauritzen’s ML estimator

In a GGM with a chordal graph G (cliques C, separators S with
multiplicities ν(S)), SSD the sum of squares matrix.

General Lauritzen’s MLE

Ω̂
MLE

G = n
(∑
C∈C

[(SSDC )−1]p
′ −
∑
S∈S

ν(S)[(SSDS)−1]p
′)

If G is a tree T ∈ T :

T is chordal.

Cliques are edges: inverses of 2× 2 matrices.

Separators are nodes: S = {1, ..., p′}.
ν(k) = deg(k)− 1.
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Network inference from incomplete counts Inference

Update of ΩT

We define:

SSD = Eh[ZᵀZ | Y ] = M̃
ᵀ
M̃ + diag(

∑
i

s̃ i ).

Tree simplification of Lauritzen’s formula:

ωt+1
Tjk = 1{jk ∈ T}

(
−ssd t

jk/n

1− (ssd t
jk/n)2

)
,

ωt+1
Tkk = 1−

∑
j

(ssd t
jk/n)× ωt+1

Tjk .

The estimates ωTjk are common to all trees sharing the edge jk:
estimating {ΩT ,T ∈ T } amounts to estimating p′(p′ − 1)/2 quantities.
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Network inference from incomplete counts Inference

M step: β

We derive the log-likelihood to get a closed form:

β̂jk =
Pg{jk ∈ T}

M(β)jk

Pg{jk ∈ T} =
∑
T∈T
jk∈T

g(T ) (in O(p′3) thanks to Kirshner (2008)).

M(β) is a p′ × p′ matrix defined in Meilă and Jaakkola (2006) as a
function of the inverse Laplacian minor (Q(β)11)−1.

This fixed-point problem is solved using optimization, with a gradient
ascent procedure.
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Network inference from incomplete counts Inference

Numerical stability and the Matrix Tree Theorem

∑
T∈T

∏
jk∈T βjk computable for any p′:

Upper and lower bounds for β, which
depend on p′ and the machine precision.

If β has too many high values, Q(β)11 can
become numerically non positive-definite
(conditioning< 1e − 16):

The mean value is controlled with a
sum constraint.

These constraints on the optimization improve the algorithm’s numerical
stability and allows larger networks.
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Network inference from incomplete counts Inference

nestor (Network inference from Species counTs with
missing actORs)

This VEM algorithm is implemented in the R package nestor.

Sensitive point: choosing a set of initial neighbors for the missing actor(s).
Several implemented propositions: sparse PCA, SBM (blockmodels),
mclust...

Interesting outputs :

Matrix of edges probabilities P

Completed matrices of means and variances M and S
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Network inference from incomplete counts Simulations

Simulation design

Count datasets:

300 scale-free graphs with 15 nodes, their highest degree node is
hidden (r = 1, p = 14).

Count datasets are simulated under the PLN model.

Cases are separated by influence of the missing actor:
Major (deg ≥ 8), Medium (5 < deg ≤ 7) and Minor (deg ≤ 5).
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Network inference from incomplete counts Simulations

Experiment

Initialization: A set of four initial cliques is proposed, which rely on sparse
PCA. Nestor is run with each one and the best run (best lower bound) is
kept.

Measures:

Global inference: AUC compares P to G.

Position of the missing actor: Precision and Recall of the inferred
neighbors (1{PH• ≥ 0.5} vs. GH•)

Reconstruction of the missing actor: Cor(MH ,ZH)
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Network inference from incomplete counts Simulations

Reconstruction of the missing actor

The decrease in performance is actually due to poorer initialization in
Minor cases.
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Network inference from incomplete counts Simulations

Initialize with more potential neighbors

FNR= FN/P
FPR=FP/N
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Network inference from incomplete counts Illustration

Barent’s sea fishes

Y : abundances of 30 fish
species in 89 sites,

X: latitude, longitude, depth
and temperature,

O: total detections per site.

Stiansen et al. (2009)

⇒ Fit with no covariates.
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Network inference from incomplete counts Illustration

Barent’s fishes networks

Left: observed network (3.3 mins). Right: network inferred with one missing
actor: H (5.0 mins).
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Network inference from incomplete counts Illustration

Relationship with temperature

Cor(Mh,Temp) = 0.85 .

Direct neighbors are more linked to the
temperature than other species.
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Conclusion & Perspectives

Conclusion

Model A probabilistic model for the inference of conditional
dependency networks from incomplete abundance data.
Accounts for covariates, offsets and missing actors.

Inference A variational EM algorithm which combines the GGM
framework flexibility and spanning trees algebraic
properties.
Outputs edges probabilities and insights on the missing
actor’s values
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Conclusion & Perspectives

Contributions

Articles
Momal R., Robin S., and Ambroise C. . ”Tree-based inference
of species interaction networks from abundance data.”
Methods in Ecology and Evolution 11.5 (2020): 621-632.

Momal R., Robin S., and Ambroise C. . ”Accounting for
missing actors in interaction network inference from
abundance data.” arXiv preprint arXiv:2007.14299 (2020).

R packages
EMtree: https://rmomal.github.io/EMtree/.

nestor (Network inference from Species counTs with

missing actORs): https://rmomal.github.io/nestor.
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Conclusion & Perspectives

Perspectives

New PostDoc position at MetGenoPolis, INRAe.

Direct Compute the partial correlations.
Improve the scalability.
Simulations with other data models and dependency
structures
Model selection method (best r , and best probability
threshold).

Mid-term Robustness to new data (error quantification).
Microbial guildes clustering.

Long-term Network comparison.
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Conclusion & Perspectives

Thank you!

raphaelle.momal@agroparistech (expires end of December)
raphaelle.momal@inrae.fr (will soon work)
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Simulation studies EMtree

Network inference methods comparison
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Simulation studies EMtree

Edges scoring comparison
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Perspectives Network analysis

Signs and strengths of interactions

ρjk =
−ωjk
√
ωkkωjj

S : sample covariance matrix of Z .
Ŝ : fitted covariance matrix (ggm R package)

Ŝ = S:

-1 0 1
-1 5 45 0
1 0 48 7

Ŝ = f (S ,G):

-1 0 1
-1 5 0 0
0 0 93 0
1 0 0 7

Ŝ = f (S , Ĝ):

-1 0 1
-1 4 0 0
0 1 93 2
1 0 0 5
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Perspectives Network analysis

Signs and strengths of interactions
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Perspectives Network analysis

Network comparison

D(pβA , pβB ) =
1

2

[
KL
(
pβB || pβA

)
+ KL

(
pβA || pβB

)]
=
∑
kl

log(βA
kl/β

B
kl)
(PA

kl − PB
kl

2

)

Oak dataset:

Null Tree + D

Tree

101 14

106
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Miscellaneous

Lauritzen’s notation

For any square matrix A:

([AB ]p)ij =

{
aij if {i , j} ∈ B,

0 if {i , j} /∈ B.

A =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 ⇒ [A{2,3}]
3 =

 0 ∗ ∗
0 ∗ ∗
0 0 0


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Miscellaneous

The M matrix

Lemma (Meilă and Jaakkola, 2006)

Qpp is the Laplacian matrix Q to which the the last column and row were
removed. M is then defined as follows:

[M]jk =


[(Qpp)−1]jj + [(Qpp)−1]kk − 2[(Qpp)−1]jk 1 ≤ j , k < p
[(Qpp)−1]jj k = p, 1 ≤ j < p
0 k = j

R. Momal netbio 2020 December 8th, 2020 51 / 44



Miscellaneous

Prevent numerical issues

The Laplacian matrix Q must be positive definite, which calls for some
numerical control of the weights β and β̃.
Weights β are controlled with bounds and sum constraints. The same
cannot be done for the variational weights as they depend on the number
of available samples n.
We define a tempering parameter α:

log β̃kl = log βkl − α(
n

2
log |R̂Tkl |+ ω̂Tkl [M

ᵀM]kl).
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