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Introduction Biological context

Species co-occurrence network

Integrated plankton community network related to carbon export at 150m (Guidi et. al,
2016)
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Introduction Biological context

Reasons for species co-occurrence

Two species can co-occur due to:

1 a similar response to the same environmental variable,

2 their response to a third species prensence/abundance (mediator
species), even if they do not directly depend on one another,

3 their direct association.

Taking environmental effects into account is paramount, yet not enough to
separate (2) from (3).
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Introduction Type of network

Simple dependencies

After adjusting for environmental covariates, we obtain (residual)
correlations between species.

correlation 6= 0 ⇐⇒ dependence
(Gaussian framework)

Spurious dependence

×

Dependencies can be direct, or
indirect/spurious and due to a
mediator species (or unaccounted
environmental factor).

⇒ Conditional dependencies are
always direct links.
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Introduction Type of network

Interpretation of conditional dependencies

Measure of the dependence link between two species after having
controlled for the effect of all others.

Regression: Y = βXX + βZZ + ε.

Y and X are dependent conditionnally on Z ⇐⇒ βX 6= 0.

Partial correlations quantify this dependence: correlation between the
residuals of the regressions of X with Z and of Y with Z (cos(ϕ)).

Graphically: are the projections of X and
Y on the hyperplan of Z orthogonal?
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Introduction Type of network

Two scenarios

Toy-example with Gaussian data (Popovic et al.,

2019)

1rst line: A ∼ B,
2nd line: A � B.

Same Cor(A,B) in
both scenarios.

Only conditional
dependences can
separate scenarios.
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Introduction Problematic

Aim of network inference from abundance data

EFI ELA GDE GME
71 1 5 6

118 2 3 0
69 0 6 2
56 0 0 0

0 1 1 0
0 0 2 0
...

...
...

...

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

(a) species abundances Y (b) covariates X (c) G

Data sample from the Fatala river dataset (Baran 1995).
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Mathematical framework

Mathematical framework
i Graphical Models

ii Graph exploration with trees

iii Poisson log-Normal model
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Mathematical framework Graphical Models

Graphical Models

Y1

Y2

Y3

Y4

Global Markov:
Y2 separates Y3 from Y4 ⇒ Y3 ⊥⊥ Y4 | Y2.

Hammersley-Clifford:
Strictly positive and continuous density f :

f global Markov ⇐⇒ f (Y ) =
∏
c∈C

ψ(Yc).

Here C =
{
{1, 2, 3}, {2, 4}

}
:

f (Y ) = ψ(Y1,Y2,Y3)× ψ(Y2,Y4)
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Mathematical framework Graphical Models

Gaussian Graphical Models (GGM)

Let Y ∼ N (µ,Σ) with precision matrix Ω = Σ−1 = (ωjk)jk :

f (Y ) ∝
∏

j ,k,,ωjk 6=0

exp(−YkωjkYj/2).

Faithful Markov property:

Y1

Y2

Y3

Y4
⇐⇒ Ω =


∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ 0
0 ∗ 0 ∗
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Mathematical framework Graphical Models

Gaussian precision terms and conditional dependence

Regression : X ∼ N (µ,Ω−1). In the regression Xj =
∑

k 6=j θjkXk + εj , it

holds that εj ∼ N (0, ω−1
jj ) and θjk = −ωjk/ωjj . Thus ωjk ∝ θjk

Covariance/Correlation matrix

Precision matrix (ωjk)jk

Partial correlations (ρjk = −ωjk/
√
ωjjωkk)

Inverse

-Normalized

partial correlation/precision 6= 0 ⇐⇒ conditional dependence
(Gaussian framework)
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Mathematical framework Graph exploration with trees

Exploring the graph space

Aim: infer G.
Very large space to explore: #Gp = 2

p(p−1)
2

Spanning trees are sparse and simple structures:

no loops

(p − 1) edges

Much smaller space to explore:

#Tp = p(p−2)
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Mathematical framework Graph exploration with trees

Summing over spanning trees

Let W = (wjk)jk be a matrix with null diagonal and positive entries, and
Q its Laplacian:

[Q]jk =

{ ∑
k wjk if j = k

−wjk otherwise

Matrix-tree Theorem (Chaiken and Kleitman, 1978)

All minors of Q are equal, and for any 1 ≤ u, v ,≤ p:

|Quv | =
∑
T∈T

∏
jk∈T

wjk

Allows to sum over p(p−2) trees in O(p3) operations.
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Mathematical framework Graph exploration with trees

Exploring T with tree averaging

p(t1) = 0.12

p(t2) = 0.51

p(t3) = 0.02

p(t4) = 0.3

.

.

.

Network inference
= edge probabilities:

P{k` ∈ T} =
∑
T∈T
k`∈T

p(T )

p(T ) ∝
∏

kl∈T wkl
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Mathematical framework Poisson log-Normal model

Getting back to Gaussian data

Transformations

Copulas

Latent variables

Modeling counts with Gaussian latent parameters
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Mathematical framework Poisson log-Normal model

Poisson log-normal model

P`N model (Aitchison and Ho, 1989) for sample i and species j :

Z i ∼ N (0,Σ)

Yij | Z i ∼ P(exp(oij + xᵀ
i θj︸ ︷︷ ︸

fixed

+Zij)).

Latent variables are iid, observed data are independent conditionally
on the Z i .

A generalized multivariate linear mixed model : fixed abiotic and
random biotic effects.

Variational estimation algorithm (PLNmodels, Chiquet et al. (2018))
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Network inference

Network inference from counts
i Model

ii Inference
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Network inference Model

General model

Assume a random tree
dependency structure T

Dependence structure in
Gaussian layer Z

Distribution for counts Y
accounting for
covariates/offsets

T

Z

Y

Matrix Tree Theorem

Gaussian Graphical Model

Poisson log-normal model
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Network inference Model

P`N model with tree-shaped Gaussian parameters


T ∼

∏
kl∈T βkl/B,

Z i | T ∼ N (0,ΩT )

Yij | Z i ∼ P(exp(oij + xᵀ
i θj + Zij)).

Gaussian mixture with pp−2 components:

p(Z ) =
∑
T∈T

p(T )N (Z | T ; 0,ΩT ).

Decomposition of the likelihood:

p(Y ,Z ,T ) = pβ(T ) pΩT
(Z | T ) pθ(Y | Z ).

R. Momal Statistical Seminar, LMRS, Rouen February 18th, 2021 19 / 44



Network inference Inference

Two-step procedure

EM algorithm (Dempster et al., 1977)

Maximizes the likelihood in presence of latent variables:

E step: Compute E[log pΘt (Y ,Z ,T ) | Y ]

M step: Θt+1 = argmaxΘ

{
E[log pΘt (Y ,Z ,T ) | Y ]

}

1 PLNmodels (Chiquet et al., 2018) gives θ̂ and approximates of Z | Y
sufficient statistics.

2 EM algorithm to get β̂.

Actually: Ẽ[log pβ(Y ,Z ,T ) | Z ] = Ẽ[log pβ(Z ,T ) | Z ] + cst.
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Network inference Inference

Factorization on the edges

Tree structure factorization:

pΩT
(Z | T ) =

∏
k

p(Z k)
∏
kl∈T

p(Z k ,Z l)

p(Z k) p(Z l)

Only the 1rst and 2nd order moments of Z | Y are required, replaced by
their variational approximation from step 1.

Expression of the surrogate

Ẽ[log pβ(Z ,T ) | Z ] =
∑
j<k

Pjk log
(
βjk ψ̂jk

)
− logB + cst,

where ψ̂jk = (1− ρ̂2
jk)−n/2 and Pjk = P{jk ∈ T | Z}.
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Network inference Inference

Proposed EM algorithm

The M matrix is built from the inverse of a Laplacian matrix (Meilă and
Jaakkola, 2006).

E step: p(T | Z ) factorizes on the edges.
Using the weight matrix W = β � ψ̂, all probabilities can be
computed at once:

Pjk = wjkM(W)jk (Kirshner, 2008)

M step: Requires the computation of ∂βjk (
∑

T∈T
∏

jk∈T βjk).
Update formula:

βjk =
Pjk

M(β)jk
This fixed-point problem is solved using optimization, with a
gradient ascent procedure.
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Network inference Inference

The M matrix

Lemma (Meilă and Jaakkola, 2006)

Qpp is the Laplacian matrix Q of W to which the last column and row
were removed. M is then defined as follows:

M(W)jk =


[(Qpp)−1]jj + [(Qpp)−1]kk − 2[(Qpp)−1]jk 1 ≤ j , k < p
[(Qpp)−1]jj k = p, 1 ≤ j < p
0 k = j

With B =
∑

T∈T
∏

jk∈T βjk , we then have:

∂βjkB = M(β)jk × B
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Network inference Inference

Contributions

Article Momal R., Robin S., and Ambroise C. . ”Tree-based
inference of species interaction networks from abundance
data.” Methods in Ecology and Evolution 11.5 (2020):
621-632.

R package EMtree: https://rmomal.github.io/EMtree/.

The article provides with illustrations and comparison to alternative
approaches (SpiecEasi, gCoda, ecoCopula, MInt, and MRFcov) on
simulated data with different types of dependency structures and 20 to 30
variables.
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Practical developments

Practical developments
i Larger networks

ii Threshold selection

iii Partial correlations
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Practical developments Larger networks

Numerical stability and the Matrix Tree Theorem

The MTT operator
∑

T∈T
∏

jk∈T x = p(p−2)x (p−1) quickly reaches the
machine precision (ex: x = 1 and p = 200 gives numerical infinity).

Upper and lower bounds for β, which depend on p and the machine
precision limits ∆min and ∆max :(

∆minp
−(p−2)

)1/(p−1)

< βjk <
(

∆maxp
−(p−2)

)1/(p−1)

If β has too many high values, Q(β)11 can become numerically non
positive-definite (conditioning< 1e − 16).

Optimization under mean constraint:

β = p−(p−2)/(p−1).
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Practical developments Larger networks

Numerical stability and the Matrix Tree Theorem

These constraints are
implemented using an
L-BFGS-B optimization
algorithm during the M step.

This fosters numerical stability
and allows for larger networks.
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Practical developments Larger networks

Evolution of running time

Varying number of nodes p from 20 to 600.

Erdös random graphs with edge probability of 3/p.

20 graphs at each point.
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Practical developments Larger networks

Quality assessment

The AUC would give misleading results due to the growing amount of negatives.
Setting a threshold, we can assess the quality of the selected set of edges.

We use a fixed probability threshold of 0.2, and the average value 2/p.

Example of a distribution of the Pjk probabilities with p = 200 nodes.
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Practical developments Larger networks

Inference quality for determined thresholds

PPV= TP/(TP+FP): amount of truth among detection (precision).

TPR=TP/(TP+FN): amount of truth detected (recall).
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Practical developments Larger networks

Inference of large networks with EMtree

Is numerically possible

Demands reasonable running time.

Thresholds performance on simulated data: 2/p becomes too small
and 0.2 too big.

⇒ Need for a threshold selection strategy.
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Practical developments Threshold selection

Stability selection concept

Seminal paper: StARS (Stability approach to regularization selection, Liu
et al., 2010)

Developed in a regularization context to select the optimal penalty.

Standard procedure for penalty selection in the inference with
graphical LASSO.

Measures, for each penalty, the average variability of edges selection
across resamples.

Here we adapt this to a stability approach to threshold selection.
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Practical developments Threshold selection

Edge selection frequencies

1 Create B random sub-samples using 80% of input data

2

b edges scores

1 2e-04 0.0024 0.0414 0.2507
2 1e-04 0.0013 0.0004 0.0574
3 2e-04 0.0013 0.0008 0.0127 ...
...

...
...

...
...

3 Apply threshold α on all resampled scores

4 f αjk =
B∑

b=1

1{Ps
jk ≥ α}/B

q edges selection frequencies: 0.000 0.0381 0.0190 0.7048 ...
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Practical developments Threshold selection

Stability of frequencies

The stability sα varies between 0 and 1 and is defined as:

sα = 1− 4
1

q

∑
j<k

f αjk (1− f αjk )︸ ︷︷ ︸
Mean of bernoulli variances

.

Stability selection requires to set a desired stability value s∗ (stability
threshold).

The optimal threshold α∗ is then

α∗ = argmin
α
{sα − s∗}
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Practical developments Threshold selection

Stability and quality

Stability is 1 if α is too big (empty selection) or too small (complete
selection). For any s∗, the larger value for α should by chosen.
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Practical developments Threshold selection

Example on a 200 nodes Erdös graph
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Practical developments Threshold selection

Simulations

Design: 30 graphs for each p ∈ {250, 600}.
Count data is simulated under the PLN model.
Inference with EMtree and a resampling of size 30.

Thresholding: Keep the edges with a score higher than α∗ in more than
90% of the resamples.

Performance: Comparison with thresholds 0.2 and 2/p.
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Practical developments Threshold selection

Stability profiles
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Practical developments Threshold selection

Performance

Medians and standard deviations over the 30 inferences:

p = 250 :

2/p 0.2 α∗(90) α∗(95) α∗(98)
PPV 0.67 (0.14) 1.00 (0.01) 0.60 (0.15) 0.64 (0.13) 0.70 (0.16)
TPR 0.66 (0.08) 0.59 (0.07) 0.82 (0.08) 0.79 (0.09) 0.71 (0.10)

p = 600 :

2/p 0.2 α∗(90) α∗(95) α∗(98)
PPV 0.09 (0.015) 1.00 (0.05) 0.53 (0.16) 0.53 (0.09) 0.66 (0.04)
TPR 1.00 (0.00) 0.17 (0.09) 0.97 (0.05) 0.97 (0.05) 0.94 (0.04)
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Practical developments Partial correlations

Computing partial correlations

ρjk =
−ωjk√
ωkkωjj

Partial correlations are paramount in the study of sign and strength of species
interactions. They can be computed from estimates of Σ or Ω, which EMtree
does not provide.

However, the R package ggm (Marchetti et al., 2006) implements an iterative
procedure to fit the model by maximum likelihood (Speed and Kiiveri, 1986).

Input data:

Empirical covariance matrix (SPLN)

Estimate of the adjacency matrix (Ĝ , output from EMtree)
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Practical developments Partial correlations

Graphical LASSO

The glasso (Friedman et al., 2008) estimates the precision matrix with an
`1 penalized regularization:

argmax
Ω≥0

{
log |Ω|+ trZᵀZΩ− λ||Ω||1

}
, ||Ω||1 =

∑
j 6=k

|ωjk |.

The inference is conducted on a grid of λ. Here we choose the penalty
giving the Ω̂ which minimizes the error on the partial correlations.
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Practical developments Partial correlations

Simulations

Partial computations are computed from:

ggm oracle: MLE fit of Σ with G

ggm Ĝ : MLE fit of Σ with Ĝ

min glasso: the glasso estimate of Ω minimizing the MSE

naive: SPLN

p=50 p=200

ggm oracle 2.6e-4 (1.5e-4) 7.0e-5 (3.6e-5)

ggm Ĝ 1.5e-3 (3.3e-4) 2.7e-4 (7.1e-5)

min glasso 2.1e-3 (2.9e-4) 6.2e-4 (6.4e-5)

naive 6.0e-3 (6.2e-4) 2.9e-3 (1.2e-4)

Median and standard deviation of mean square errors of the partial correlations,
on 30 Erdös graphs.

R. Momal Statistical Seminar, LMRS, Rouen February 18th, 2021 42 / 44



Conclusion & Perspectives

Conclusion

Model A probabilistic model for the inference of conditional
dependency networks from abundance data.
Uses a latent mixture of trees-shaped Gaussian variables to
cast the problem in the GGM framework.

Inference An EM algorithm which combines the GGM framework
flexibility and spanning trees algebraic properties.
Outputs edges probabilities of membership to the latent tree.
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Conclusion & Perspectives

Conclusion

Developments Constraints on tree parameters makes it numerically possible
to manage large datasets
Stability approach gives promising results for threshold
selection
The combination of PLN and EMtree outputs allows to get
partial correlation estimates.

Perspectives Robustness assessment.
PostDoc at MetaGenoPolis: network comparison through
microbial guilds in human gut microbiota.

Thank you!

raphaelle.momal@inrae.fr
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