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The thesis project

In a few words

A project using mathematics, statistical modelling and machine learning
techniques for applications in microbiology, metagenomics, or ecology.

Direction:

Stéphane Robin Chistophe Ambroise

Supports:
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The thesis project

Network example in ecology

Pocock et. al 2012

Tool to better
understand species
interactions,
eco-systems
organizations

Allows for resilience
analyses, pathogens
control, ecosystem
comparison, response
prediction...
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The thesis project

Aim of network inference from abundance data

date site
apr93 km03
apr93 km03
apr93 km03
apr93 km03
apr93 km17
apr93 km17

...
...

EFI ELA GDE GME HFA
71 1 5 6 0

118 2 3 0 0
69 0 6 2 0
56 0 0 0 0

0 1 1 0 0
0 0 2 0 0
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(a) covariates X (b) species abundances Y (c) inferred network

Data sample from the Fatala river dataset (ade4 R package).

Unknown underlying structure

Unobserved interaction data
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Statistical modelling The dependency structure

Graphical models: a statistical framework for conditional
dependence

Example:

A1

A2

A3

A4

Connected: all variables are
dependant

Direct dependence or
conditional independence

A4 is independent from (A1,A3)
conditionally on A2

P(A1, . . . ,Ap) ∝
∏

C∈CG

ψC (AC )

where CG = set of maximal cliques of G .
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Statistical modelling The observed counts

P`N model

Yij ∼ P (exp(oij + xᵀi θj + Zij)) .

A latent variable model

easy handling of multi-variate data, offsets and covariates

Random effects Z add dependence among species. Classically (Aitchison
and Ho, 1989):

Z ∼ N (0,Σ)

We foster sparsity with a mixture of tree structures:

Z ∼
∑

p(T )N (0,ΣT ), T ∼
∏
jk

βjk/B
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Inference EM algorithm

Maximum likelihood with hidden data

observations Y
hidden parameters H

}
⇒ log p(Y ) intractable.

EM algorithm maximizes a surrogate for the log-likelihood :

Q = E[log p(Y ,H)|Y ] =

∫
log p(Y , h)p(h|Y )dh

In most cases the conditional density p(h|Y ) is intractable.

Variational EM (VEM) resorts to a proxy q(h) = p̃(h|Y ).
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Inference EM algorithm

Two hidden quantities

Our model includes two hidden layers of parameters. We need to compute
conditional probabilities:

p(T |Y ): computationally complex but tractable thanks to an
algebraic mathematical tool (E: Kirshner (2008), M: Meilă and
Jaakkola (2006)).

p(Z |Y ): no close form, a VEM gives Σ̂ and θ̂ (VEM: Chiquet et al.
(2017)).
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Inference Using trees

Mixture of trees: sparse and efficient

Sparse structures:

#Gp = 2
p(p−1)

2 reduced to #Tp = p(p−2)

Suitable algebraic tool:
Matrix tree theorem (Chaiken and Kleitman, 1978)∑

T∈T

∏
(k,l)∈T

ψk,l(Y ) = det(Lψ(Y ))→ Θ(p3)

Approach: infer the network by averaging spanning trees
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Inference Using trees

Concept of tree averaging

Z1 Z2

Z3Z4

P{T = t1|Y }

Z1 Z2

Z3Z4

P{T = t2|Y }

Z1 Z2

Z3Z4

P{T = t3|Y }

Z1 Z2

Z3Z4

P{T = t4|Y }

...

Compute edge
probabilities:

Z1 Z2

Z3Z4

P{(j , k) ∈ T |Y }

Thresholding
probabilities:

Z1 Z2

Z3Z4
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Inference Using trees

EMtree algorithm

Input: Abundance data, covariates, offsets

1rst step: VEM algorithm to fit PLN model ⇒ θ̂, Σ̂Z .

2nd step: EM algorithm to update the βjk ⇒ conditional probabilities
for all edges.

Yij ∼ P
(
exp(oij + xᵀi θj + Zij)

)
.

Z ∼
∑

p(T )N (0,ΣT ), T ∼
∏
jk

βjk/B

Thresholding: Select edges with probability above the probability of
edges in a tree drawn uniformly (2/p)

Resampling: Strengthen the results: only edges selected in more than
80% of S sub-samples are kept.

Available for download at https://github.com/Rmomal/EMtree
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Application Fatala River fishes

Inferred networks
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Evaluating performances

Evaluation strategy

Alternatives:
Two methods on transformed counts, no covariates:

SpiecEasi algorithm Kurtz et al. (2015)

gCoda Fang et al. (2017)

One taking raw counts and covariates:

MInt Biswas et al. (2016) (uses PLN model)

Simulation design:

1 Choose G and define ΣG accordingly

2 Sample count data Y from P`N (X ,ΣG )

3 Infer the network with EMtree, SpiecEasi, gCoda, and MInt

4 Compare results with presence/absence of edges (FDR, AUC)
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Evaluating performances Results

Difficulty level

False Discovery Rate (FDR): how many false edges there is among what is detected ?
ratio: number of detections over the number of true edges

EMtree is a sparser approach than MInt
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Evaluating performances Results

Network density

Area under the (ROC) curve (AUC): ”how good is a classifier to rank true positives
higher”
100 observations, 20 species:

Effect of graph density on the evolution of AUC median and inter-quartile intervals in Erdös and
Cluster structures.
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Evaluating performances Results

To be published soon
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Conclusion

Contributions:
Formal probabilistic model for network inference from
count data
R package: https://github.com/Rmomal/EMtree

Preprint: Tree-based Reconstruction of Ecological Network from
Abundance Data. https://arxiv.org/pdf/1905.02452.pdf

Perspectives:
Sign and strength of interactions according to graphical
models theory
Missing major actor (species/covariates)
More collaborations with experts in macro-ecology field
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Thank you

Contact :

email raphaelle.momal@agroparistech.fr

Web Rmomal.github.io

Twitter @MomalRaphaelle
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Meilă, M. and Jordan, M. I. (2000). Learning with mixtures of trees. Journal of Machine Learning Research, 1:1–48.
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Conditional probability computation

Kirchhoff’s theorem (matrix tree, Aitchison and Ho (1989))

For all W = (akl)k,l a symmetric matrix, the corresponding Laplacian Q(W ) is defined
as follows:

Quv (W ) =

{
−auv 1 ≤ u < v ≤ n∑n

i=1 avi 1 ≤ u = v ≤ n.

Then for all u et v :
|Q∗uv (W )| =

∑
T∈T

∏
{k,l}∈ET

akl

P((k, l) ∈ T |Z) =
∑

T∈T :(k,l)∈T

P(T |Z) =

∑
(k,l)∈T P(T )P(Z |T )∑

T P(T )P(Z |T )

= 1− |Q
∗
uv (βΨ−kl)|
|Q∗uv (βΨ)|

= τkl
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Tree structured data

Data dependency structure relies on a tree

Likelihood factorizes on nodes and edges
(Chow and Liu, 1968):

P(Z |T ) =
d∏

j=1

P(Zj)
∏

k,l∈T
ψkl(Z ) ,

Where

ψkl(Z ) =
P(Zk ,Zl)

P(Zk)× P(Zl)
.

Rmq : with standardised gaussian data, Ψ̂ = [ψ̂kl ] ∝ (1− ρ̂Z 2)−1/2
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Direct EM algorithm ?

Complete likelihood :

P(Y ,Z ,T ) = P(T )×P(Z |T )×P(Y |Z)

log(P(Y ,Z ,T )) =
∑
k,l

1{(k,l)∈T}(log(βkl) + log(ψkl(Z)))− log(B)

+
∑
k

(log(P(Zk)) + log(P(Yk |Zk)))

Conditional expectation :

Eθ[log(P(Y ,Z ,T ))|Y ] =
∑
k,l∈V

P((k, l) ∈ T |Y ) log(βkl) +E[1{(k,l)∈T}log(ψkl(Z)|Y )]

+
∑
k

E[log(P(Zk))|Y ] +E[log(P(Yk |Zk))|Y ]− log(B)

Raphaëlle Momal WiMLDS Meetup 2019 September 26th, 2019 21 / 23



Direct EM algorithm ?

Complete likelihood :

P(Y ,Z ,T ) = P(T )×P(Z |T )×P(Y |Z)

log(P(Y ,Z ,T )) =
∑
k,l

1{(k,l)∈T}(log(βkl) + log(ψkl(Z)))− log(B)

+
∑
k

(log(P(Zk)) + log(P(Yk |Zk)))

Conditional expectation :

Eθ[log(P(Y ,Z ,T ))|Y ] =
∑
k,l∈V

P((k, l) ∈ T |Y ) log(βkl) +E[1{(k,l)∈T}log(ψkl(Z)|Y )]

+
∑
k

E[log(P(Zk))|Y ] +E[log(P(Yk |Zk))|Y ]− log(B)
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M step

M step

Goal : optimization of weights βkl .

argmax
βkl

∑
k,l∈V

τkl(log(βkl) + log(ψkl))− log(B) +
∑
k

log(P(Zk))



With high combinatorial complexity of B =
∑
T∈T

∏
k,l∈T

βkl

How to compute
∂B
∂βkl

?
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M step

βkl update

A result from Meilă Meilă and Jordan (2000)

Inverting a minor of the laplacien Q, we define M :
Muv = [Q∗−1]uu + [Q∗−1]vv − 2[Q∗−1]uv u, v < n

Mnv = Mvn = [Q∗−1]vv v < n

Mvv = 0.

On peut montrer que :
∂|Q∗uv (W )|

∂βkl
= Mkl × |Q∗uv (W )|

∂Eθ[log(P(Z ,T ))|Z ]

∂βkl
=
τkl
βkl
− 1

B

∂B

∂βkl

β̂h+1
kl =

τ hkl
Mh

kl
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