This function aims at clustering the marginal network, inferred from edges probabilities obtained with either nestorFit() or EMtree().

init_blockmodels(sigma_O, MO, SO, k = 3, alpha = 0.1, cores = 1)

Arguments

sigma_O

PLNmodels output: covariance matrix estimate.

MO

PLNmodels output: observed means estimate.

SO

PLNmodels output: observed marginal variances estimate.

k

Number of groups to find.

alpha

Tempering parameter.

cores

Number of cores for parallel computation (uses mclapply, not available for Windows).

Value

A list of cliques

Examples

data=generate_missing_data(n=100,p=10,r=1,type="scale-free", plot=TRUE)
data$TC
#> [[1]] #> [1] 1 2 3 4 8 #>
PLNfit<-norm_PLN(data$Y) MO<-PLNfit$MO SO<-PLNfit$SO sigma_O=PLNfit$sigma_O #-- initialize with blockmodels init_blockmodels(sigma_O, MO, SO, k=2 )
#> #>
#> $cliqueList #> $cliqueList[[1]] #> $cliqueList[[1]][[1]] #> [1] 3 #> #> #> $cliqueList[[2]] #> $cliqueList[[2]][[1]] #> [1] 1 2 4 5 6 7 8 9 10 #> #> #>