init_blockmodels.Rd
This function aims at clustering the marginal network, inferred from edges probabilities obtained with either nestorFit()
or EMtree()
.
init_blockmodels(sigma_O, MO, SO, k = 3, alpha = 0.1, cores = 1)
sigma_O | PLNmodels output: covariance matrix estimate. |
---|---|
MO | PLNmodels output: observed means estimate. |
SO | PLNmodels output: observed marginal variances estimate. |
k | Number of groups to find. |
alpha | Tempering parameter. |
cores | Number of cores for parallel computation (uses mclapply, not available for Windows). |
A list of cliques
data$TC#> [[1]] #> [1] 1 2 3 4 8 #>PLNfit<-norm_PLN(data$Y) MO<-PLNfit$MO SO<-PLNfit$SO sigma_O=PLNfit$sigma_O #-- initialize with blockmodels init_blockmodels(sigma_O, MO, SO, k=2 )#> #>#> $cliqueList #> $cliqueList[[1]] #> $cliqueList[[1]][[1]] #> [1] 3 #> #> #> $cliqueList[[2]] #> $cliqueList[[2]][[1]] #> [1] 1 2 4 5 6 7 8 9 10 #> #> #>