Main user functions

nestorFit()

Core function of nestorFit

List.nestorFit()

Run function nestorFit on a list of initial cliques using parallel computation (mclapply)

generate_missing_data()

Simulate data and parameters including missing actors.

norm_PLN()

Runs PLN function from the PLNmodels package and normalized the outputs

initVEM()

Initialize all parameters for the variational inference

Computing functions

VEstep()

Computes the variational expectation step of the algorithm

Mstep()

Computes the maximization step of the algorithm

computeOmega()

Updates the precision terms

computeWg()

Updates the variational edges weights inside the VEM.

exactMeila()

Calculates the Meila matrix using exact computation

Kirshner()

Computes edges probability from weights W (Kirshner (07) formulas)

logSumTree()

Exact computation of matrix tree log determinant

LowerBound()

Computes the lower bound.

initOmega()

Initialize Sigma and Omega using an initial clique of neighbors of the missing actor

inverse.gmp()

Computes exact inverses using gmp package

det.fractional()

Get numerator and denominators

alphaMax()

Heuristic for an upper value of tempering parameter alpha

Clique initialization

FitSparsePCA()

Fit sparse PCA on a grid of alpha

boot_FitSparsePCA()

Finds initial cliques using a sparse PCA on bootstraps sub-samples

complement_spca()

Select the k first components and their complement as initial cliques

init_blockmodels()

Find initial cliques using blockmodels on the initial marginalized network

init_mclust()

Find initial cliques using mclust on the estimated correlation matrix

Visualizations and tools

plotPerf()

Comparaitve plot of estimated edge probabilities and original graph.

plotConv()

Plot function for nestorFit convergence

ggimage()

ggplot heatmap

ppvtpr()

Computes precision and recall statistics separating observed from hidden variables, and (FPR,FNR) for hidden variables .

auc()

wraper of auc from ROCR